Buy Correlation Clustering by Francesco Bonchi- Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data mining > Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)
Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)

Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)


     0     
5
4
3
2
1



International Edition


X
About the Book

Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined. Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area.

Table of Contents:
Preface.- Acknowledgments.- Foundations.- Constraints.- Relaxed Formulations.- Other Types of Graphs.- Other Computational Settings.- Conclusions and Open Problems.- Bibliography.- Authors' Biographies.

About the Author :
Francesco Bonchi is Scientific Director at the ISI Foundation, Turin, Italy, where he’s also coordinating the “Learning and Algorithms for Data Analytics” Research Area. Before becoming Scientific Director, he served as Deputy Director with responsibility over the Industrial Research area. Earlier, he was Director of Research at Yahoo Labs in Barcelona, Spain, where he led the Web Mining Research group. He is also (part-time) Research Director for Big Data & Data Science at Eurecat (Technological Center of Catalunya), Barcelona. His recent research interests include algorithms and learning on graphs and complex networks (e.g., financial networks, social networks, brain networks), fair and explainable AI, and more in general, privacy and all ethical aspects of data analysis and AI. He has more than 200 publications in these areas. He also filed 16 U.S. patents, and got granted 9 U.S. patents. He is member of the Steering Committee of ECML PKDD and IEEE DSAA, and is in the editorialboard of several journals in the Data Science area. Dr. Bonchi has been the General Co-Chair of the 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2018). He has been twice PC Co-Chair of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2010 and 2018), the 16th IEEE International Conference on Data Mining (ICDM 2016), the 28th ACM Conference on Hypertext and Hypermedia (HT 2017), the “Social Network Analysis and Graph algorithms for the Web” track at The International World Wide Web Conference (WWW 2018), and the 6th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2019). Dr. Bonchi has also served as program co-chair of the first and second ACM SIGKDD International Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007 and 2008), the 1st IEEE International Workshop on Privacy Aspects of Data Mining (PADM 2006), and the 4th International Workshop on Knowledge Discovery in Inductive Databases (KDID 2005). He is co-editor of the book Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques published by Chapman & Hall/CRC Press. He will be General Chair of ECML PKDD 2023 to be held in Turin (Italy), and of ACM SIGKDD 2024, to be held in Barcelona (Spain). David García-Soriano is a Senior Research Scientist at the Institute for Scientific Interchange (ISI) in Turin, in the “Algorithmic Data Analytics” group. Previously, he received his Ph.D. in Computer Science (2012) from the University of Amsterdam and his undergraduate degrees in Computer Science (2007) and Mathematics (2009) from the Complutense University of Madrid. He has been a member of the Algorithms and Complexity group at CWI Amsterdam (the Dutch National Research Center for Mathematics and Computer Science), and a research visitor at the Israel Institute of Technology in Haifa (Technion). Later, he was a postdoctoral researcher at Yahoo Labs Barcelona and aLecturer in Computer Science at Pompeu Fabra University. He has also worked for industry as a software engineer at Google, CERN (the European Organization for Nuclear Research), and Tuenti. In recent years, he has been developing machine-learning and optimization-based solutions to financial portfolio management problems, in collaboration with Intesa San Paolo banking group. His research focuses on the theory and practice of large-scale data mining and machine learning, with an emphasis on computational efficiency and provable quality guarantees; topics include algorithmic theory, combinatorial optimization, scalable machine learning, data mining, algorithmic fairness, social network analysis, data streams, and portfolio optimization. His research findings have been published in top-tier conferences (SODA, KDD, SIGMOD, ICALP, CCC, ICDM, WWW, ICDE, RANDOM, ECML/PKDD, SDM, …) and journals (SIAM Journal on Computing, Combinatorica, Data Mining and Knowledge Discovery, …). Francesco Gullois a senior researcher at the UniCredit banking group, specifically in the “Applied Research & Innovation” unit of the “AI, Data & Analytics ICT” department (UniCredit Services controlled company). Previously, he has been part of the “Research & Development” department (UniCredit holding company) for 5 years. He received his Ph.D., in “Computer and Systems Engineering,” from the University of Calabria, Italy, in 2010. During his Ph.D., he was an intern at the George Mason University, U.S. After his graduation, he spent 1.5 years in the University of Calabria, Italy (as a postdoc), and 4 years in the Yahoo Labs, Spain (as a postdoc first, and as a research scientist then). His research falls into the broad areas of artificial intelligence and data science, with special emphasis on algorithmic aspects. His recent interests include mining and learning on graphs, natural language processing, and AI in finance. He has been practicing both applied research (with a 10-year work experience in industrial-research environments), and fundamental research (with 80 publications in premier venues such as SIGMOD, VLDB, KDD, ICDM, CIKM, EDBT, WSDM, ECML-PKDD, SDM, TODS, TKDE, TKDD, MACH, DAMI, TNSE, JCSS, PR). He has also been serving the scientific community, by, e.g., being Workshop Chair of ICDM’16, organizing workshops/symposia (MIDAS workshop @ECML-PKDD[’16-’21], MultiClust symposium @SDM’14, MultiClust workshop @KDD’13, 3Clust workshop @PAKDD’12), or being part of the program committee of major AI/data-science conferences (e.g., SIGMOD, KDD, WWW, IJCAI, AAAI, CIKM, SIGIR, ICDM, WSDM, SDM,ECML-PKDD, ICWSM).


Best Sellers


Product Details
  • ISBN-13: 9783031791987
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 133
  • Returnable: Y
  • Width: 191 mm
  • ISBN-10: 3031791983
  • Publisher Date: 08 Mar 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Data Mining and Knowledge Discovery


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)
Springer International Publishing AG -
Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Correlation Clustering: (Synthesis Lectures on Data Mining and Knowledge Discovery)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!