Single-Photon Avalanche Diodes and Photon Counting Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture
37%
Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture

Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture


     0     
5
4
3
2
1



Available


X
About the Book

This book covers the latest trends in the design of single-photon avalanche diodes (SPADs), which are the front-end sensors in modern photon counting systems. The authors describe the fundamental physics that enable photon counting in these devices. They also discuss systems that are made from these detectors, specifically describing circuit architectures that may be used to achieve high-fidelity photon counting. Coverage features example devices and systems designed in the authors' research groups as well as different approaches undertaken by other experts in the field. The authors take a unique, modular approach that covers every aspect of the design stack, with stand-alone chapters, allowing readers to focus on specific aspects of the technology stack. Coverage includes the device-physics aspects of the detectors, their integration in modern electronics fabrication technologies like CMOS, and application-specific systems that utilize these detectors.

Table of Contents:
Chapter 1. Fundamentals of Phototransduction in Semiconductors.- Chapter 2. Perimeter-Gated Single-Photon Avalanche Diodes.-Chapter 3. Optoelectronic Characteristics of Perimeter-Gated Single-Photon Avalanche Diodes.- Chapter 4. Perimeter-Gated Single Photon Avalanche Diode Imagers.- Chapter 5. Perimeter Gated Single-Photon Avalanche Diode Arrays as Hardware Security Primitives.- Chapter 6. Silicon Photomultipliers.- Chapter 7. Readout Strategies and Asynchronous Architectures.- Chapter 8. Dead Time Correction in Single-Photon Avalanche Diode Front-Ends.- Chapter 9. Conclusions, Contributions, and Future Work.

About the Author :
Marc Dandin received the B.S. and M.S. degrees in Electrical Engineering and the PhD degree in Bioengineering, all from the University of Maryland, College Park, MD, USA. He is currently an Assistant Professor with the Department of Electrical and Computer Engineering at Carnegie Mellon University, Pittsburgh, PA, USA, where he also holds a courtesy appointment in the Biomedical Engineering Department. His current research focuses on integrated circuit design and microsystems development for biomedical applications. He was an Adjunct Professor of Electrical Engineering at the George Washington University, Washington, DC, USA, where he developed and taught graduate courses in analog and radio-frequency integrated circuit design. He was the Founder and CEO of Kiskeya Microsystems LLC, Rockville, MD, USA, a company developing point-of-care diagnostics technologies for resource-limited settings. He is an intellectual property professional with over ten years of experience in patent preparation and prosecution. He is a Senior Member of the IEEE and the recipient of the Early Career Distinguished Alumni Award from the University of Maryland, College Park. He is also the recipient of the Fischell Fellowship in Biomedical Engineering and of the Jimmy H.C. Lin Award for Entrepreneurship. He is a member of the Advisory Board of the Fischell Department of Bioengineering at the University of Maryland, College Park. Nicole McFarlane is an Associate Professor at the University of Tennessee. Her work focuses on circuits and devices for sensing systems, and her research directions include carbon-based nanostructures and CMOS-based solutions for biological, environmental, and nuclear science applications. She also works on hardware implemented security solutions and tradeoffs on information and power in mixed-signal systems. She currently serves as the Advance Professor in the Tickle College of Engineering. She serves on the Biomedical and Life Science Circuits and Systems and the Sensory Systems Technical Committees for the IEEE Circuits and Systems Society (CASS) and was a member of the IEEE CASS Board of Governors for 2018-2020 and 2021-2023 terms. She has been an Associate Editor for the IEEE Transactions on Biomedical Circuits and Systems and the IEEE Open Journal of Circuits and Systems. She has also served as the Associate Editor-in-Chief for Digital Communications for the IEEE Open Journal on Circuits and Systems and is currently serving as the Editor-in-Chief for the journal. Md Sakibur Sajal received his B.S. degree in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh in 2017. He served as an Adjunct Lecturer at BUET before joining United International University, Dhaka, Bangladesh as a full-time faculty in the same year. He joined the department of Electrical and Computer Engineering at Carnegie Mellon University as a graduate student in the Fall of 2020 where he received his M.S. degree in 2023. Currently, he is a PhD candidate at Carnegie Mellon, and his research focus is the development of perimeter gated single photon avalanche diode (pg-SPAD) imagers for novel applications. His work on pg-SPAD imagers has resulted in multiple publications, notably on physically unclonable functions (PUFs) implemented with pg-SPADs and on true random number generation with entropy maximization by noise modulation. Fahimeh Dehghandehnavi received her B.S. degree in Electrical and Electronic Engineering in 2019 from the University of Tehran, Tehran, Iran, and her M.S. in Electrical and Computer Engineering in 2022 from Carnegie Mellon University, Pittsburgh, PA, USA. Currently, she is a Ph.D. candidate in the Department of Electrical and Computer Engineering at Carnegie Mellon University. Her doctoral research focuses on CMOS sensors ranging from pg-SPAD imagers to capacitance biosensors. Babak Nouri earned the B.S. degree in Electrical Engineering from George Mason University, the M.S. degree in Electrical Engineering from the Virginia Polytechnic Institute, and the PhD degree in Electrical Engineering, from the University of Maryland, College Park. His doctoral research at the University of Maryland (College Park), focused on the design, simulation, fabrication and testing of integrated single-photon sensing and processing systems based on single-photon avalanche diode (SPAD) pixel detectors. Notably, his worked focused on the design, development and testing of: large-area digital SPAD pixels structurally adapted for ultra-low dark noise levels, with specialized front-end electronics for high digital throughput; SPAD-based digital readout detector arrays with on-chip analog encoding of aggregated digital pixel outputs; integrated decoding architectures for free-running digitization and readout of SPAD-based digital pixel arrays, and on novel analytical models for improved dead time corrections in SPAD front-ends. He also has served as an adjunct professor in advanced analog electronic design at the George Washington University (GWU), and as a guest technical reviewer for the Optics Express journal.


Best Sellers


Product Details
  • ISBN-13: 9783031643330
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 184
  • Sub Title: From Phototransduction to Circuit Architecture
  • ISBN-10: 303164333X
  • Publisher Date: 01 Sep 2024
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture
Springer International Publishing AG -
Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!