Buy PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)
37%
PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)

PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book covers analysis and design of PLL-based frequency modulators, used in the hearth of modern FMCW radars. The desired radar performance targets are translated into the modulator specifications first. The authors then focus on describing the optimal modulator architecture, with special care given to core building blocks of the system. The central analog building block described is a novel charge integrating-based chirp generator, which breaks limits of similar art in the field where performance (noise, area) is typically traded for power. The book then continues to describe power-efficient, mixed-signal background calibration engine implementation, which when applied in context of the presented system, ensures pristine linearity of the generated chirps. The detailed design guide shows how robust duty-cycling can be enabled, to ensure low-power consumption of the system, without compromise in radar performance. A complete overview of all circuit-level building blocks is provided, to ensure that readers can tackle every aspect of the system. Finally, the book covers description of a rigorous chirp-linearity and phase-noise performance characterization methodology, critical for evaluation of radar system performance metrics. This book provides insightful design guidelines for DTC-based fractional-N PLL synthesizers and QDAC-based FMCW frequency modulators for both academic researchers and industry IC design engineers.

Table of Contents:
Introduction.- A 10GHz Sub Sampling PLL Chirp Synthesizer using a Charge.- Integrating Digital-to-Analog Converter (DAC).- A 16 GHz Duty-Cycled Charge Pump PLL-based Chirp Synthesizer.- Conclusion.

About the Author :
Pratap Tumkur Renukaswamy received the M.Sc. degree in integrated systems and circuits design from the Carinthia University of Applied Sciences, Villach, Austria, in 2016, and the Ph.D. degree from Vrije Universiteit Brussel, Brussels, Belgium, in 2023. His PhD research was focused on frequency synthesis for FMCW radar application. He is currently a researcher at imec, Leuven, Belgium, working on mixed-signal circuits for frequency synthesis and analog-to-digital converters. Nereo Markulic received the M.Sc. degree in electrical engineering from the University of Zagreb, Zagreb, Croatia, in 2012, and the Ph.D. degree summa cum laude from Vrije Universiteit Brussel, Brussels, Belgium, in 2018. His Ph.D. work was in collaboration with the Interuniversity Microelectronics Center (imec), Leuven, Belgium, on digital subsampling phase-locked loops (PLLs) and polar transmitters. He is currently a Research Scientist with imec, working on RF and mixed-signal circuits for radar applications and next generation connectivity. He has authored and coauthored publications and patents on PLLs and analog-to-digital converters and a book on frequency synthesis. Dr. Markulic currently serves on the Technical Program Committee for the Symposia on VLSI Technology and Circuits. He is a co-recipient of the ISSCC 2019 Lewis Winner Award for Outstanding Paper. Jan Craninckx obtained his Ms. and Ph.D. degree in microelectronics summa cum laude from the ESAT-MICAS laboratories of the KULeuven in 1992 and 1997, respectively. His Ph.D. work was on the design of low-phase noise CMOS integrated VCOs and PLLs for frequency synthesis. From 1997 till 2002 he worked with Alcatel Microelectronics (later part of STMicroelectronics) as a senior RF engineer on the integration of RF transceivers for GSM, DECT, Bluetooth and WLAN. In 2002 he joined IMEC (Leuven, Belgium) as principal scientist working on RF, analog and mixed signal circuit design. He is currently IMECfellow. His research focuses on the design of RF transceiver front-ends in nanoscale CMOS, covering all aspects of RF, mmwave, analog and data converter design. Dr. Craninckx is an IEEE Fellow and has authored and co-authored more than 200 papers, book chapters, and patents. He is/was a regular member of the Technical Program Committee for several IEEE SSCS conferences, was the chair of the SSCS Benelux chapter (2006-2011), SSCS Distinguished Lecturer (2012-2013), and elected SSCS AdCom member (2017-2019). He received the received the ISSCC 2015 Jan Van Vessem Award and the ISSCC 2019 Lewis Winner Award. He was Associate Editor (2009-2016) and Editor-in-Chief (2016-2019) of the IEEE Journal of Solid-State Circuits.


Best Sellers


Product Details
  • ISBN-13: 9783031597756
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 240 mm
  • No of Pages: 156
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Series Title: Synthesis Lectures on Engineering, Science, and Technology
  • ISBN-10: 3031597753
  • Publisher Date: 17 Jun 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Returnable: N
  • Width: 168 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)
Springer International Publishing AG -
PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

PLL Modulation and Mixed-Signal Calibration Techniques for FMCW Radar: (Synthesis Lectures on Engineering, Science, and Technology)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!