Principles of Locally Conformally Kähler Geometry
Home > Mathematics and Science Textbooks > Mathematics > Geometry > Differential and Riemannian geometry > Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)
Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)

Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results.  A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis.  The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers. Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory.  More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds.  Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics. Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds.  New proofs of many results are given using the methods developed earlier in the text.  The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research.  

Table of Contents:
Introduction.- Part I: Lectures in locally conformally Kähler geometry.- Kähler manifolds.- Connections in vector bundles and the Froebenius theorem.- Locally conformally Kahler manifolds.- Hodge theory on complex manifolds and Vaisman's theorem.- Holomorphic vector bundles.- CR, Contact and Sasakian manifolds.- Vaisman manifolds.- The structure of compact Vaisman manifolds.- Orbifolds.- Quasi-regular foliations.- Regular and quasi-regular Vaisman manifolds.- LCK manifolds with potential.- Embedding LCK manifolds with potential in Hopf manifolds.- Logarithms and algebraic cones.- Pseudoconvex shells and LCK metrics on Hopf manifolds.- Embedding theorem for Vaisman manifolds.- Non-linear Hopf manifolds.- Morse-Novikov and Bott-Chern cohomology of LCK manifolds.- Existence of positive potentials.- Holomorphic S^1 actions on LCK manifolds.- Sasakian submanifolds in algebraic cones.- Oeljeklaus-Toma manifolds.- Appendices.- Part II: Advanced LCK geometry.- Non-Kähler elliptic surfaces.- Kodaira classification for non-Kähler complex surfaces.- Cohomology of holomorphic bundles on Hopf manifolds.- Mall bundles and flat connections on Hopf manifolds.- Kuranishi and Teichmüller spaces for LCK manifolds with potential.- The set of Lee classes on LCK manifolds with potential.- Harmonic forms on Sasakian and Vaisman manifolds.- Dolbeault cohomology of LCK manifolds with potential.- Calabi-Yau theorem for Vaisman manifolds.- Holomorphic tensor fields on LCK manifolds with potential.- Part III: Topics in locally conformally Kähler geometry.- Twisted Hamiltonian actions and LCK reduction.- Elliptic curves on Vaisman manifolds.- Submersions and bimeromorphic maps of LCK manifolds.- Bott-Chern cohomology of LCK manifolds with potential.- Hopf surfaces in LCK manifolds with potential.- Riemannian geometry of LCK manifolds.- Einstein-Weyl manifolds and the Futaki invariant.- LCK structures on homogeneous manifolds.- LCK structures on nilmanifolds and solvmanifolds.- Explicit LCK metrics on Inoue surfaces.- More on Oeljeklaus-Toma manifolds.- Locally conformally parallel and non-parallel structures.- Open questions.


Best Sellers


Product Details
  • ISBN-13: 9783031581229
  • Publisher: Birkhauser Verlag AG
  • Publisher Imprint: Birkhauser Verlag AG
  • Height: 235 mm
  • No of Pages: 736
  • Series Title: 354 Progress in Mathematics
  • ISBN-10: 3031581229
  • Publisher Date: 04 May 2025
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)
Birkhauser Verlag AG -
Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Principles of Locally Conformally Kähler Geometry: (354 Progress in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!