Buy Large Language Models in Cybersecurity - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Natural language and machine translation > Large Language Models in Cybersecurity: Threats, Exposure and Mitigation
Large Language Models in Cybersecurity: Threats, Exposure and Mitigation

Large Language Models in Cybersecurity: Threats, Exposure and Mitigation


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This open access book provides cybersecurity practitioners with the knowledge needed to understand the risks of the increased availability of powerful large language models (LLMs) and how they can be mitigated. It attempts to outrun the malicious attackers by anticipating what they could do. It also alerts LLM developers to understand their work's risks for cybersecurity and provides them with tools to mitigate those risks. The book starts in Part I with a general introduction to LLMs and their main application areas. Part II collects a description of the most salient threats LLMs represent in cybersecurity, be they as tools for cybercriminals or as novel attack surfaces if integrated into existing software. Part III focuses on attempting to forecast the exposure and the development of technologies and science underpinning LLMs, as well as macro levers available to regulators to further cybersecurity in the age of LLMs. Eventually, in Part IV, mitigation techniques that should allow safe and secure development and deployment of LLMs are presented. The book concludes with two final chapters in Part V, one speculating what a secure design and integration of LLMs from first principles would look like and the other presenting a summary of the duality of LLMs in cyber-security. This book represents the second in a series published by the Technology Monitoring (TM) team of the Cyber-Defence Campus. The first book entitled "Trends in Data Protection and Encryption Technologies" appeared in 2023. This book series provides technology and trend anticipation for government, industry, and academic decision-makers as well as technical experts.

Table of Contents:
Part I: Introduction.- 1. From Deep Neural Language Models to LLMs.- 2. Adapting LLMs to Downstream Applications.- 3. Overview of Existing LLM Families.- 4. Conversational Agents.- 5. Fundamental Limitations of Generative LLMs.- 6. Tasks for LLMs and their Evaluation.- Part II: LLMs in Cybersecurity.- 7. Private Information Leakage in LLMs.- 8. Phishing and Social Engineering in the Age of LLMs.- 9. Vulnerabilities Introduced by LLMs through Code Suggestions.- 10. LLM Controls Execution Flow Hijacking.- 11. LLM-Aided Social Media Influence Operations.- 12. Deep(er)Web Indexing with LLMs.- Part III: Tracking and Forecasting Exposure.- 13. LLM Adoption Trends and Associated Risks.- 14. The Flow of Investments in the LLM Space.- 15. Insurance Outlook for LLM-Induced Risk.- 16. Copyright-Related Risks in the Creation and Use of ML/AI Systems.- 17. Monitoring Emerging Trends in LLM Research.- Part IV: Mitigation.- 18. Enhancing Security Awareness and Education for LLMs.- 19. Towards Privacy Preserving LLMs Training.- 20. Adversarial Evasion on LLMs.- 21. Robust and Private Federated Learning on LLMs.- 22. LLM Detectors.- 23. On-Site Deployment of LLMs.- 24. LLMs Red Teaming.- 25. Standards for LLM Security.- Part V: Conclusion.- 26. Exploring the Dual Role of LLMs in Cybersecurity: Threats and Defenses.- 27. Towards Safe LLMs Integration.

About the Author :
Andrei Kucharavy is the co-director of the Generative Learning Center at HES-SO Valais-Wallis. He holds a PhD from University of Paris-Sorbonne (2017), and is an engineer of Ecole Polytechnique (2013) and EPFL. Prior to this position he worked on counter-measures to the use of generative machine learning in offensive cyber-operations as a Distinguished Post-Doctoral Fellow at the Cyber-Defence Campus of armasuisse Science and Technology (S+T). Octave Plancherel is a study coordinator at the Cyber-Defence Campus of armasuisse S+T. He holds a Bachelor (2022) degree in Business Informatics from the University of Fribourg. Valentin Mulder is a Scientific Project Manager at the Cyber-Defence Campus of armasuisse S+T. He holds a Master (2022) degree in Legal Issues, Crime, and Security of Information Technologies from the University of Lausanne. Before his current position, he worked in the banking industry, particularly in the area of onlinefraud. In 2023, he co-edited the book “Trends in Data Protection and Encryption Technologies” published by Springer. Alain Mermoud is the Head of the Technology Monitoring team at the Cyber-Defence Campus of armasuisse S+T. He obtained his PhD (2019) in Information Systems from HEC Lausanne. His research interests lie at the intersection of information science, foresight, emerging technologies, and (cyber) threat intelligence. He co-edited and published over 30 peer-reviewed scientific articles in prestigious journals, such as Technological Forecasting and Social Change, Computers in Human Behavior, Knowledge-Based Systems, or Journal of Cybersecurity. In 2023, he co-edited the book “Trends in Data Protection and Encryption Technologies” published by Springer. Vincent Lenders is the founding Director of the Cyber-Defence Campus from armasuisse S+T. He holds a Master (2001) and PhD (2006) degree in electrical engineering and information technologies from ETH Zurich. He has contributed to developing and implementing various national cyber strategies at the Swiss Government and has published more than 150 technical papers on cyber security, data science and networking. In 2023, he co-edited the book “Trends in Data Protection and Encryption Technologies” published by Springer.


Best Sellers


Product Details
  • ISBN-13: 9783031548291
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 247
  • Sub Title: Threats, Exposure and Mitigation
  • ISBN-10: 3031548299
  • Publisher Date: 01 Jun 2025
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large Language Models in Cybersecurity: Threats, Exposure and Mitigation
Springer International Publishing AG -
Large Language Models in Cybersecurity: Threats, Exposure and Mitigation
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large Language Models in Cybersecurity: Threats, Exposure and Mitigation

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!