Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Automatic control engineering > Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)

Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)


     0     
5
4
3
2
1



International Edition


X
About the Book

Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games develops its specific learning techniques, motivated by application to autonomous driving and microgrid systems, with breadth and depth: integral reinforcement learning (RL) achieves model-free control without system estimation compared with system identification methods and their inevitable estimation errors; novel inverse RL methods fill a gap that will help them to attract readers interested in finding data-driven model-free solutions for inverse optimization and optimal control, imitation learning and autonomous driving among other areas.   Graduate students will find that this book offers a thorough introduction to integral and inverse RL for feedback control related to optimal regulation and tracking, disturbance rejection, and multiplayer and multiagent systems. For researchers, it provides a combination of theoretical analysis, rigorous algorithms, and a wide-ranging selection of examples. The book equips practitioners working in various domains – aircraft, robotics, power systems, and communication networks among them – with theoretical insights valuable in tackling the real-world challenges they face.

Table of Contents:
1. Introduction.- 2. Background on Integral and Inverse Reinforcement Learning for Dynamic System Feedback.- 3. Integral Reinforcement Learning for Optimal Regulation.- 4. Integral Reinforcement Learning for Optimal Tracking.- 5. Integral Reinforcement Learning for Nonlinear Tracker.- Integral Reinforcement Learning for H-infinity Control.- 6. Inverse Reinforcement Learning for Linear and Nonlinear Systems.- 7. Inverse Reinforcement Learning for Two-Player Zero-Sum Games.- 8. Inverse Reinforcement Learning for Multi-player Nonzero-sum Games.

About the Author :
Bosen Lian obtained his B.S. degree from the North China University of Water Resources and Electric Power, Zhengzhou, China, in 2015, the M.S. degree from Northeastern University, Shenyang, China, in 2018, and the Ph.D. from the University of Texas at Arlington, TX, USA, in 2021. He is currently an Assistant Professor at the Electrical and Computer Engineering Department, Auburn University, Auburn, AL, USA. Prior to that, he was an Adjunct Professor at the Electrical Engineering Department, University of Texas at Arlington and a Postdoctoral Research Associate at the University of Texas at Arlington Research Institute. His research interests focus on reinforcement learning, inverse reinforcement learning, distributed estimation, distributed control, and robotics.  Wenqian Xue received the B.Eng. degree from the Qingdao University, Qingdao, China, in 2015, the M.SE. degree from the Northeastern University, Shenyang, China, in 2018, where she is currently pursuing towards the Ph.D. degree. She was a Research Assistant (Visiting Schlor) with the University of Texas at Arlington from 2019 to 2021. Her current research interests include learning-based data-driven control, reinforcement learning and inverse reinforcement learning, game theory, distributed control of multi-agent systems. She is a Reviewer of Automatica, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Cybernetics, etc. Frank L. Lewis obtained the Bachelor's Degree in Physics/EE and the MSEE at Rice University, the MS in Aeronautical Engineering from Univ. W. Florida, and the Ph.D. at Ga. Tech. Fellow, National Academy of Inventors. Fellow IEEE, Fellow IFAC, Fellow AAAS, Fellow European Union Academy of Science, Fellow U.K. Institute of Measurement & Control. PE Texas, U.K. Chartered Engineer. UTA Charter Distinguished Scholar Professor, UTA Distinguished Teaching Professor, and Moncrief-O’Donnell Chair at the University of Texas at Arlington Research Institute. Lewis is Ranked as number 19 in the world of all scientists in Electronics and Electrical Engineering by Research.com. Ranked number 5 in the world in the subfield of Industrial Engineering and Automation according to a Stanford University Research Study in 2021. 80,000 Google Scholar Citations, H-index 123. He works in feedback control, intelligent systems, reinforcement learning, cooperative control systems, and nonlinear systems. He is author of 8 U.S. patents, numerous journal special issues, 445 journal papers, 20 books, including the textbooks Optimal Control, Aircraft Control, Optimal Estimation, and Robot Manipulator Control. He received the Fulbright Research Award, NSF Research Initiation Grant, ASEE Terman Award, Int. Neural Network Soc. Gabor Award, U.K. Inst Measurement & Control Honeywell Field Engineering Medal, IEEE Computational Intelligence Society Neural Networks Pioneer Award, AIAA Intelligent Systems Award, AACC Ragazzini Award. He has received over $12M in 100 research grants from NSF, ARO, ONR, AFOSR, DARPA, and USA industry contracts. Helped win the US SBA Tibbets Award in 1996 as Director of the UTA Research Institute SBIR Program. Hamidreza Modares received the B.S. degree from the University of Tehran, Tehran, Iran, in 2004, the M.S. degree from the Shahrood University of Technology, Shahrood, Iran, in 2006, and the Ph.D. degree from the University of Texas at Arlington, Arlington, TX, USA, in 2015. He is currently an Assistant Professor in the Department of Mechanical Engineering at Michigan State University. Prior to joining Michigan State University, he was an Assistant professor in the Department of Electrical Engineering, Missouri University of Science and Technology. His current research interests include control and security of cyber-physical systems, machine learning in control, distributed control of multi-agent systems, and robotics. He is an Associate Editor of IEEE Transactions on Neural Networks and Learning Systems. Bahare Kiumarsi received the B.S. degree in electrical engineering from the Shahrood University of Technology, Iran, in 2009, the M.S. degree in electrical engineering from the Ferdowsi University of Mashhad, Iran, in 2013, and the Ph.D. degree in electrical engineering from the University of Texas at Arlington, Arlington, TX, USA, in 2017. In 2018, she was a Post-Doctoral Research Associate with the Coordinated Science Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL, USA. She is currently an Assistant Professor with the Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA. Her current research interests include machine learning in control, security of cyber-physical systems, game theory, and distributed control. 


Best Sellers


Product Details
  • ISBN-13: 9783031452512
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 267
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3031452518
  • Publisher Date: 06 Mar 2024
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: Advances in Industrial Control


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)
Springer International Publishing AG -
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games: (Advances in Industrial Control)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!