Domain Generalization with Machine Learning in the NOvA Experiment
Home > Mathematics and Science Textbooks > Physics > Particle and high-energy physics > Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)
Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)

Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)


     0     
5
4
3
2
1



International Edition


X
About the Book

This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk offalsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.

Table of Contents:
Chapter 1: Neutrinos: A Desperate Remedy.- Chapter 2. A Review of Neutrino Physics.- Chapter 3. The NOvA Experiment.- Chapter 4. Event Reconstruction.- Chapter 5. The 3-Flavor Analysis.- Chapter 6. A Long Short-Term Memory Neural Network.- Chapter 7. Domain Generalization by Adversarial Training.- Chapter 8. Conclusion.

About the Author :
I am an experimental particle physicist focusing on neutrino physics as part of the NOvA and ANNIE experiments located at the Fermi National Accelerator Laboratory (Fermilab) in Batavia Illinois, USA. After graduating cum laude from the University of North Carolina at Charlotte with scientific bachelor degrees in Mechanical Engineering and Physics, I went on to pursue my Ph.D. at the University of Virginia in Charlottesville Virginia. Under the supervision of Craig Group, I studied neutrino physics as a member of the NOvA collaboration. Putting my engineering degree to good use, I received the US Department of Energy Office of Science Graduate Student Research Award to travel to Fermilab and assist in the construction of a Test Beam experiment for NOvA. Alongside the NOvA Test Beam, I also contributed to the main 3-flavor oscillation analysis and was selected as part of the three-person writing committee to draft the paper summarizing our 2020 results (M.A Acero et al. 2022, doi: 10.1103/PhysRevD.106.032004). My graduate education culminated in the machine learning project detailed in this book, which focuses on a technique to train more robust neural networks and reduce the impact of systematic uncertainties that limit the precision of our measurements.


Best Sellers


Product Details
  • ISBN-13: 9783031435829
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 170
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3031435826
  • Publisher Date: 09 Nov 2023
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: Springer Theses


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)
Springer International Publishing AG -
Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Domain Generalization with Machine Learning in the NOvA Experiment: (Springer Theses)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!