Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems
Home > Mathematics and Science Textbooks > Mathematics > Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)
Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differentialequations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention.   The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.

Table of Contents:
W. Aboussi, M. Ziggaf, I. Kissami and M. Boubekeur_A finite volume scheme with a diffusion control parameter on unstructured hybrid mesh: application to two-dimensional Euler equations.- L. Baroukh and E. Audusse, Flow of Newtonian fluids in a pressurized pipe.- W. Barsukow, Truly multi-dimensional all-speed methods for the Euler equations.- T. Bellotti, Monotonicity for genuinely multi-step methods: results and issues from a simple lattice Boltzmann scheme.- C. Birke and C. Klingenberg, A Low Mach Number Two-speed Relaxation Scheme for Ideal MHD Equations.- G. Birke, C. Engwer, S. May and F. Streitbürger, Domain of Dependence stabilization for the acoustic wave equation on 2D cut-cell meshes.- J. Bussac and K. Saleh, Numerical simulation of a barotropic two-phase flow model with miscible phases.- S. Chu and A. Kurganov, Local Characteristic Decomposition Based Central-Upwind Scheme for Compressible Multifluids.- F. Dubois and J. Antonio Rojas-Quintero, Simpson’s quadrature for a nonlinear variational symplectic scheme.- E. Chudzik, C. Helzel and Yanick-Florian Kiechle, An Active Flux Method for the Vlasov-Poisson System.- M. Dumbser, S. Busto and A. Thomann, On thermodynamically compatible finite volume schemes for overdetermined hyperbolic systems.- M. Ferrand, Jean-Marc Hérard, T. Norddine and S. Ruget, A scheme using the wave structure of second-moment turbulent models for incompressible flows.- T. Galié, S. Kokh, Ahmad El Halabi, K. Saleh and P. Fernier, Study of a Numerical Scheme with Transport-Acoustic Operator Splitting on a Staggered Mesh.- C. Fiorini, Uncertainty propagation of the shock position for hyperbolic PDEs using a sensitivity equation method.- C. Ghosn, T. Goudon and S. Minjeaud, Staggered MUSCL scheme for Euler equation.- M. Girfoglio, A. Quaini and G. Rozza, GEA: a new finite volume-based open source code for the numerical simulation of atmospheric and ocean flows.- P. Helluy and R. Hélie, Stable second order boundary conditions forkinetic approximations.- A. Iollo, G. Puppo and A. Thomann, Two-dimensional linear implicit relaxed scheme for hyperbolic conservation laws.- H. H. Holm and F. Beiser, Reducing Numerical Artifacts by Sacrificing Well-Balance for Rotating Shallow-Water Flow.- G. Jomée and Jean-Marc Hérard, Relaxation process in an immiscible three-phase flow model.- J. Jung, I. Lannabi and V. Perrier, On the convergence of the Godunov scheme with a centered discretization of the pressure gradient.- J. Keim, A. Schwarz, S. Chiocchetti, A. Beck and C. Rohde, A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes.- S.-C. Klein, Essentially Non-Oscillatory Schemes using the Entropy Rate Criterion.- T. Laidin and T. Rey, Hybrid Kinetic/Fluid numerical method for the Vlasov-Poisson-BGK equation in the diffusive scaling.- M. Mehrenberger, L. Navoret and Anh-Tuan Vu, Composition schemes for the guiding-center model.- M. Ndjinga and K. Ait-Ameur, TVD analysis of a (pseudo-)staggered scheme for the isentropic Euler equations.- F. Peru, Backward reconstruction for non resonant triangular systems of conservation laws.- Sri Redjeki Pudjaprasetya and P. V. Swastika, Two-layer exchange flow with time-dependent barotropic forcing.- G. Schnücke, Split Form Discontinuous Galerkin Methods for Conservation Laws.- L. Renelt, C. Engwer and M. Ohlberger, An optimally stable approximation of reactive transport using discrete test and infinite trial spaces.- A. Toufaili, S. Gavrilyuk, O. Hurisse and Jean-Marc Hérard, An hybrid solver to compute a turbulent compressible model.


Best Sellers


Product Details
  • ISBN-13: 9783031408625
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 308
  • Series Title: 433 Springer Proceedings in Mathematics & Statistics
  • Width: 155 mm
  • ISBN-10: 3031408624
  • Publisher Date: 13 Oct 2024
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)
Springer International Publishing AG -
Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023(433 Springer Proceedings in Mathematics & Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!