Data Analytics
Home > Computing and Information Technology > Databases > Data Analytics: A Theoretical and Practical View from the EDISON Project
9%
Data Analytics: A Theoretical and Practical View from the EDISON Project

Data Analytics: A Theoretical and Practical View from the EDISON Project


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools. Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is dedicated to a lesson, allowing readers to dive deep into each topic with detailed explanations and examples. Readers will learn the theoretical concepts and then immediately apply them to practical exercises to reinforce their knowledge. And in the lab sessions, readers will learn the ins and outs of the R environment and data science methodology to solve exercises with the R language.With detailed solutions provided for all examples and exercises, readers can use this book to study and master data analytics on their own. Whether you're a student, professional, or simply curious about data analytics, this book is a must-have for anyone looking to expand their knowledge in this exciting field. The following chapters have contributions by: Chapter 4, "Anomaly Detection" - Juan J. Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez, and Abdelhamid Tayebi Chapter 5, "Unsupervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Abdelhamid Tayebi Chapter 6, "Supervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Josefa Gómez

Table of Contents:
Contents.- Chapter 1. Introduction to data science and data analytics 1.- 1.1 About Data Science.- 1.2 About the EDISON Project and Data Science Framework.- 1.2.1 The EDISON project.- 1.2.2 The EDISON Data Science Framework.- 1.3 About Data Analytics.- 1.3.1 Data Analytics Competences .- 1.3.2 Data Analytics Body of Knowledge.- 1.3.3 Data Analytics Model Curriculum Approach .- 1.3.4 Data Analytics Professional Profiles .- 1.4 About this Book .- Chapter 2.  Data …… 49.- A. Theory.- 2.1 Introduction .- 2.2 Characteristic .- 2.2.1 Definition of characteristic .- 2.2.2 Types of characteristics .- 2.3 Data  .- 2.3.1 Definition of Data.- 2.3.2 Types of data from their nature.- 2.3.3 Types of data from their storage .- 2.4 Available Data .- 2.4.1 Experiment .- 2.4.2 Data population .- 2.4.3 Data Sample .- 2.4.4 Data Quality .- 2.5 Frequency .- 2.5.1 Definition of frequency .- 2.5.2 Types of frequency .- 2.5.3 Frequency of grouped Data.- 2.5.4 Mode.- 2.6 Mean.- 2.6.1 Definition of Mean .- 2.6.2 Arithmetic Mean .- 2.6.3 Variance and Standard Deviation .- 2.7 Median .- 2.7.1 Range .- 2.7.2 Median .- 2.7.3 Quantiles .- 2.7.4 Quantiles range.- B. Computer Based Solving .- 2.8 Reproject .- 2.9 R graphical user interface .- 2.10  Data exercises solves with R.- C. Data Exercises solves .- 2.11  Handmade exercises .- 2.12  Exercises solves in R.- Annex.   Data Extended Concepts .- 2.A.1 Frequency .- 2.A.2 Mean.- Chapter 3.  Probability .- A. Theory .- 3.1 Introduction .- 3.2 Event .- 3.3 Sets theory actions and operations .- 3.4 La Place or classic probability.- 3.5 Bayesian Probability .- 3.6 Probability distribution of random variables .- 3.6.1 Random Variable.- 3.6.2 Probability distribution .- 3.6.3 Discrete probability distributions .- 3.6.3.1  Bernoulli Probability distribution.- 3.6.3.2  Binomial Probability distribution.- 3.6.3.3  Geometric Probability distribution .- 3.6.3.4 Poison Probability distribution .- 3.6.4 Continuous probability distribution .- 3.6.4.1  Normal Distribution .- 3.6.4.2  Pearson chi square distribution.- 3.6.4.3  T the student distribution .- 3.6.4.4  F the fisher distribution .- B. Computer Based Solving .- C. Probability exercises solved .- 3.7 Handmade exercises .- 3.8 Exercises solved in R.- Annex.   Probability extended concepts.- Chapter 4.  Anomaly Detection .- Juan. J Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez, Adelhamid Tayebi.- A. Theory.- 4.1 Introduction .- 4.2 Anomaly detection basic on Statistics .- 4.2.1 Anomaly detection Basic on the mean and the standard deviation .- 4.2.2Anomaly detection based on the quartiles.- 4.2.3 Anomaly detection based errors of the residuals .- 4.3 Anomaly detection based on proximity. K nearest neighbor algorithm .- 4.4 Anomaly detection based on density simplified local outlier factor algorithm.- B. Computer based solving.- 4.5 R packages .- 4.6 Anomaly detection the exercise solves with R .- C. Anomaly detection exercises solves .- 4.7 Handmade exercises .- 4.8 Exercises solved in  R .-  .- Chapter 5.  Unsupervised Classification .- Juan. J Cuadrado-Gallego, Yuri Demchenko, Adelhamid Tayebi.- A. Theory .- 5.1 Introduction .- 5.2 Unsupervised classification based on distances K Meand Algorithm.- 5.3 Agglomerative hierarchical clustering .- B. Computer Based Solved .- 5.4 R studio .- 5.5 Unsupervised classification exercises solves with R .- C. Unsupervised Classification Solved .- 5.6 Handmade exercises .- 5.7 Exercises solved in  R.-  .- Chapter 6.  Supervised Classification .- Juan. J Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez.- A. Theory .- 6.1 Introduction .- 6.2 Decision tree.- 6.2.1 Optimizing the construction of a decision tree: ID3 Algorithm.- 6.2.2 Optimizing the construction of a decision tree: CART Algorithm .- 6.2.3 Optimizing the construction of a decision tree: Error Algorithm .- 6.3 Neural Network .- 6.4 Naïve Bayes .- 6.5 Regression functions .- 6.5.1 Lineal regression of polynomial events .- 6.5.2 Lineal regression of polynomial for three events .- 6.5.3 Lineal regression of polynomial for K events.- 6.5.4 No Lineal regression of polynomial for two events.- 6.5.5 No Lineal regression of not polynomial for two events.- 6.5.6 Lineal regression validity analysis .- B. Computer based solving.- C. Supervised classification analysis exercises solved .- 6.6 Handmade Exercises.- 6.7. Exercises solves in R.- Chapter 7.  Association .- A. Theory .- 7.1 Introduction .- 7.2 Analysis of association of events composed by a single elementary event .- 7.2.1 Support .- 7.2.2 Confidence .- 7.2.3 Contingency .- 7.2.4 Correlation .- 7.3 Analysis of association of events composed by more than one elementary event . Apriori algorithm.- B. Computer based solving.- C. Association analysis  exercises solved .- 7.4 Handmade Exercises .- 7.5 Exercises solves in R.

About the Author :
Dr. Juan José Associate Professor in the Department of Computer Science at the University of Alcalá, in the area of ​​Computer Science and Artificial Intelligence and Affiliate Associate Professor in the Department of Computer Science and Software Engineering, of the Faculty of Engineering and Computer Science, of the Concordia University, in Montreal, Canada. Previously, he was a professor at the Spanish Universities Universitat Oberta de Catalunya, in Barcelona, ​​from 2004 to 2016, the University of Valladolid, in Segovia, in 2004, and the Universidad Carlos III de Madrid, in Madrid, between 1997 and 2004. He has been Visiting Associate Professor, in the Department of Software and IT Engineering, of the École de Technologie Supérieure, at the Université du Québec à Montréal, in Montreal, Canada, from 2009 to 2015; and Visiting Professor, in the Postgraduate and Research section, of the Faculty of Administration and Management, of the National Polytechnic Institute, inMexico City, Mexico, from 2009 to 2014. He was also a researcher in the Department of Astrophysics and Atmospheric Sciences, from the Faculty of Physical Sciences, of the Complutense University of Madrid, in Madrid, Spain, from 1994 to 1997. Juan José has a degree in Physical Sciences from the Complutense University of Madrid, in 1994; obtained in Recognition of the research sufficiency in the Faculty of Physical Sciences of the Complutense University of Madrid, in 1997; and the Doctorate in Computer Engineering, at the Carlos III University of Madrid, in 2001, with the qualification of A "cum laude" unanimously by the court. It currently has 4 six-year periods and 3 five-year periods. In 2010, she obtained the Outstanding Research Pathway certification by the National Agency for Evaluation and Prospective (ANEP) of the Secretary of State for Universities and Research of the Ministry of Science and Innovation, within the program I3 Program, Incentive for the Incorporation andIntensification of Research Activity. Juan José has carried out research stays at the Universities: University of Amsterdam, Amsterdam, Holland, at the Informatics Institute, of the Faculty of Science, in 2018, funded by a mobility grant from the University of Alcalá; at the Otto-von-Guericke-University, Magdeburg, Germany, at the Institüt für Verteilte Systeme, de la Fakültat für Informatik, in 2013, funded by a mobility grant from the University of Alcalá, in 2012, within a sabbatical year granted by the University of Alcalá, in 2009, funded by a "José Castillejo" for further studies and research, from the University of Alcalá; at the Université du Québec à Montréal, in Montreal, Canada, in the Department of Software and IT Engineering, from the École de Technologie Supérieure, in 2006 and 2005; at the University of Reading, in Reading, United Kingdom, in the Computer Science Department, in 2005 and 2004; and the Università Roma Tre, in Rome, Italy, in the Dipartamento di Informatica e Automatizacione, in 2004 and 2003. Juan José is currently researching in the fields of Artificial Intelligence and Data Science. He has made more than 200 scientific publications, many of which have been in journals indexed in the JRC Science Edition. He has also participated, as principal investigator or researcher, in numerous research projects, both financed with public funding, both European, national, regional or university; as well as with private financing, through contracts made through article 83 of the University Law. He has also directed nine doctoral theses, all of them having received the highest qualification; and has participated in numerous doctoral courts, in Spain, Germany, and Mexico. He is also an External Evaluator of projects in Computer Science, of the Natural Sciences and Engineering Research Council of Canada since 2014 and Evaluator of the National Agency for Evaluation and Prospective, of the General Directorate of Scientific and TechnicalResearch of Spain, of the Ministry of Economy, Industry and competitiveness of Spain. Dr. Yuri Demchenko (M): Yuri Demchenko is a Senior Researcher at the System and Network Engineering of the University of Amsterdam. He is graduated from the National Technical University of Ukraine "Kiev Polytechnic Institute" where he also received his PhD (Cand. of Science) degree. His main research areas include Big Data and Data Intensive Science Technologies and Infrastructure, Cloud and Intercloud Architecture, general security architectures and distributed access control infrastructure for cloud based services and data centric applications. He is currently involved in the European projects GN3plus, EUBrazil CloudConnect and Cyclone where he conducts research and developments on the cloud federation infrastructure and cloud based Big Data infrastructure.  He is actively contributing to the standardisation activity at RDA, OGF, IETF, NIST on defining Big Data ArchitectureFramework and Intercloud architecture for complex infrastructure services provisioning in clouds. Recently he has developed and contributed to development of a number of educational courses on Big Data and Cloud Computing for on campus education at UvA, online education for Laureate Online Education (University of Liverpool), and for IEEE eLearning Library. He also published a number of paper on innovative learning methods he implemented in different courses he taught ranging from Cloud Computing to Big Data Infrastructure and Data Science.


Best Sellers


Product Details
  • ISBN-13: 9783031391316
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 477
  • Sub Title: A Theoretical and Practical View from the EDISON Project
  • ISBN-10: 3031391314
  • Publisher Date: 11 Nov 2024
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data Analytics: A Theoretical and Practical View from the EDISON Project
Springer International Publishing AG -
Data Analytics: A Theoretical and Practical View from the EDISON Project
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Analytics: A Theoretical and Practical View from the EDISON Project

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!