Buy Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Particle and high-energy physics > Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)
37%
Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)

Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book highlights the most complete characterization of the Higgs boson properties performed to date in the "golden channel," i.e., decay into a pair of Z bosons which subsequently decay into four leptons. The data collected by the CMS experiment in the so-called Run-II data-taking period of the LHC are used to produce an extensive set of results that test in detail the predictions of the Standard Model. Given the remarkable predictive power of the SM when including the Higgs boson, possible new physics will require even more extensive studies at higher statistics. A massive upgrade of the detectors is necessary to maintain the current physics performance in the harsh environment of the High-Luminosity LHC (HL-LHC) project, expected to start by the end of 2027. The CMS Collaboration will replace the current endcap calorimeters with a High Granularity Calorimeter (HGCAL). The HGCAL will be the very first large-scale silicon-based imaging calorimeter ever employed in ahigh-energy physics experiment. This book presents the results of the analysis of the test beam data collected with the first large-scale prototype of the HGCAL. The results of this analysis are used to corroborate the final design of the HGCAL and its nominal physics performance expected for the HL-LHC operations.

Table of Contents:
Introduction.- The CMS detector at the LHC.- The CMS endcap calorimeters upgrade for the HL-LHC.- The "golden channel" and its properties.- Events selection and categorization.- Signal and background modelling.- The Higgs boson properties in the "golden channel".- Conclusions

About the Author :
Matteo Bonanomi is a particle physicist from Italy. After obtaining a Master of Science in Physics at the University of Milano-Bicocca with a thesis on the design and validation of an innovative experiment to measure the hadronic contributions to the anomalous magnetic moment of the muon, Matteo joined the CMS Collaboration in 2018 for his Ph.D. He worked on his Ph.D. thesis at the Laboratoire Leprince Ringuet (LLR) at the École Polytechnique in France, studying the performance of the CMS High Granularity Calorimeter (HGCAL) with test beam data and measuring the properties of the Higgs boson in the "golden channel," where the Higgs boson decays into a pair of Z bosons. He is currently a postdoctoral researcher at the University of Hamburg, and his main research interests are the precision measurements of the Higgs boson properties and the searches for additional bosons that could unveil the presence of physics beyond the Standard Model.  


Best Sellers


Product Details
  • ISBN-13: 9783031268359
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 267
  • Series Title: Springer Theses
  • Width: 155 mm
  • ISBN-10: 3031268350
  • Publisher Date: 10 May 2024
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: With the CMS Experiment at the LHC


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)
Springer International Publishing AG -
Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Response of the High Granularity Calorimeter HGCAL and Characterisation of the Higgs Boson: With the CMS Experiment at the LHC(Springer Theses)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!