Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)

|
     0     
5
4
3
2
1




International Edition


About the Book

The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.  

Table of Contents:
Computational (Integrative) Pathology.- Semi-supervised histological image segmentation via hierarchical consistency enforcement.- Federated Stain Normalization for Computational Pathology.- DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification.- ReMix: A General and Efficient Framework for Multiple Instance Learning based Whole Slide Image Classification.- S3R: Self-supervised Spectral Regression for Hyperspectral Histopathology Image Classification.- Distilling Knowledge from Topological Representations for Pathological Complete Response Prediction.- SETMIL: Spatial Encoding Transformer-based Multiple Instance Learning for Pathological Image Analysis.- Clinical-realistic Annotation for Histopathology Images with Probabilistic Semi-supervision: A Worst-case Study.- End-to-end Learning for Image-based Detection of Molecular Alterations in Digital Pathology.- S5CL: Unifying Fully-Supervised, Self-Supervised, and Semi-Supervised Learning Through Hierarchical Contrastive Learning.- Sample hardness based gradient loss for long-tailed cervical cell detection.- Test-time image-to-image translation ensembling improves out-of-distribution generalization in histopathology.- Predicting molecular traits from tissue morphology through self-interactive multi-instance learning.- InsMix: Towards Realistic Generative Data Augmentation for Nuclei Instance Segmentation.- Improved Domain Generalization for Cell Detection in Histopathology Images via Test-Time Stain Augmentation.- Transformer based multiple instance learning for weakly supervised histopathology image segmentation.- GradMix for nuclei segmentation and classification in imbalanced pathology image datasets.- Spatial-hierarchical Graph Neural Network with Dynamic Structure Learning for Histological Image Classification.- Gigapixel Whole-Slide Images Classification using Locally Supervised Learning.- Whole Slide Cervical Cancer Screening Using Graph Attention Network and Supervised Contrastive Learning.- RandStainNA: Learning Stain-Agnostic Features from Histology Slides by Bridging Stain Augmentation and Normalization.- Identify Consistent Imaging Genomic Biomarkers for Characterizing the Survival-associated Interactions between Tumor-infiltrating Lymphocytes and Tumors.- Semi-Supervised PR Virtual Staining for Breast Histopathological Images.- Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology.- Weakly Supervised Segmentation by Tensor Graph Learning for Whole Slide Images.- Test Time Transform Prediction for Open Set Histopathological Image Recognition.- Lesion-Aware Contrastive Representation Learning for Histopathology Whole Slide Images Analysis.- Kernel Attention Transformer (KAT) for Histopathology Whole Slide Image Classification.- Joint Region-Attention and Multi-Scale Transformer for Microsatellite Instability Detection from Whole Slide Images in Gastrointestinal Cancer.- Self-Supervised Pre-Training for NucleiSegmentation.- LifeLonger: A Benchmark for Continual Disease Classification.- Unsupervised Nuclei Segmentation using Spatial Organization Priors.- Visual deep learning-based explanation for neuritic plaques segmentation in Alzheimer’s Disease using weakly annotated whole slide histopathological images.- MaNi: Maximizing Mutual Information for Nuclei Cross-Domain Unsupervised Segmentation.- Region-guided CycleGANs for Stain Transfer in Whole Slide Images.- Uncertainty Aware Sampling Framework of Weak-Label Learning for Histology Image Classification.- Local Attention Graph-based Transformer for Multi-target Genetic Alteration Prediction.- Incorporating intratumoral heterogeneity into weakly-supervised deep learning models via variance pooling.- Prostate Cancer Histology Synthesis using StyleGAN Latent Space Annotation.- Fast FF-to-FFPE Whole Slide Image Translation via Laplacian Pyramid and Contrastive Learning.- Feature Re-calibration based Multiple Instance Learning for Whole Slide Image Classification.- Computational Anatomy and Physiology.- Physiological Model based Deep Learning Framework for Cardiac TMP Recovery.- DentalPointNet: Landmark Localization on High-Resolution 3D Digital Dental Models.- Landmark-free Statistical Shape Modeling via Neural Flow Deformations.- Learning shape distributions from large databases of healthy organs: applications to zero-shot and few-shot abnormal pancreas detection.- From Images to Probabilistic Anatomical Shapes: A Deep Variational Bottleneck Approach.- Opthalmology.- Structure-consistent Restoration Network for Cataract Fundus Image Enhancement.- Unsupervised Domain Adaptive Fundus Image Segmentation with Category-level Regularization.- Degradation-invariant Enhancement of Fundus Images via Pyramid Constraint Network.- A Spatiotemporal Model for Precise and Efficient Fully-automatic 3D Motion Correction in OCT.- DA-Net: Dual Branch Transformer and Adaptive Strip Upsampling for Retinal Vessels Segmentation.- Visual explanations for the detection of diabetic retinopathy from retinal fundus images.- Multidimensional Hypergraph on Delineated Retinal Features for Pathological Myopia Task.- Unsupervised Lesion-Aware Transfer Learning for Diabetic Retinopathy Grading in Ultra-Wide-Field Fundus Photography.- Local-Region and Cross-Dataset Contrastive Learning for Retinal Vessel Segmentation.- Y-Net: A Spatiospectral Dual-Encoder Network for Medical Image Segmentation.- Camera Adaptation for Fundus-Image-Based CVD Risk Estimation.- Opinions Vary? Diagnosis First!.- Learning self-calibrated optic disc and cup segmentation from multi-rater annotations.- TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes.- DRGen: Domain Generalization in Diabetic Retinopathy Classification.- Frequency-Aware Inverse-Consistent Deep Learning for OCT-Angiogram Super-Resolution.- A Multi-task Network with Weight Decay Skip Connection Training for Anomaly Detection in Retinal Fundus Images.- Multiscale Unsupervised Retinal Edema Area Segmentation in OCT Images.- SeATrans: Learning Segmentation-Assisted diagnosis model via Transformer.- Screening of Dementia on OCTA Images via Multi-projection Consistency and Complementarity.- Noise transfer for unsupervised domain adaptation of retinal OCT images.- Long-tailed Multi-label Retinal Diseases Recognition via Relational Learning and Knowledge Distillation.- Fetal Imaging.- Weakly Supervised Online Action Detection for Infant General Movements.- Super-Focus: Domain Adaptation for Embryo Imaging via Self-Supervised Focal Plane Regression.- SUPER-IVIM-DC: Intra-voxel incoherent motion based Fetal lung maturity assessment from limited DWI data using supervised learning coupled with data-consistency.- Automated Classification of General Movements in Infants Using Two-stream Spatiotemporal Fusion Network.


Best Sellers


Product Details
  • ISBN-13: 9783031164330
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 767
  • Returnable: Y
  • Sub Title: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II
  • ISBN-10: 3031164334
  • Publisher Date: 16 Sep 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 13432 Lecture Notes in Computer Science
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)
Springer International Publishing AG -
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II(13432 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!