Buy Deep Neural Networks and Data for Automated Driving by Sebastian Houben
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Transport technology and trades > Automotive technology and trades > Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety
Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety

Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety


     0     
5
4
3
2
1



International Edition


X
About the Book

This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and,last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above.

Table of Contents:
Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety.- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance?.- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces.- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation.- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task.- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation.- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations.- Chapter 8. Confidence Calibration for Object Detection and Segmentation.- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches.- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation.- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation.- Chapter 12. Safety Assurance of Machine Learning for Perception Functions.- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation.- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique.- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness.

About the Author :
Tim Fingscheidt received the Dipl.-Ing. degree in Electrical Engineering in 1993 and the Ph.D. degree in 1998 from RWTH Aachen University, Germany, both with distinction. He joined AT&T Labs, Florham Park, NJ, USA, for a PostDoc in 1998 and Siemens AG (Mobile Devices), Munich, Germany, in 1999, heading a signal processing development team. After a stay with Siemens Corporate Technology, Munich, Germany, from 2005 to 2006, he became Full Professor with the Institute for Communications Technology, Technische Universität (TU) Braunschweig, Germany, holding the Chair of “Signal Processing and Machine Learning”. His research interests are machine learning in vision and time series such as speech, with focus on environment perception, signal classification, coding, and enhancement. He is founder of the TU Braunschweig Deep Learning Lab (tubs.DLL), a graduate student research thinks tank being active in publicly funded and industry research projects. Many of his projects have been dealing with automotive applications. Since 2018, he has been actively involved in the large-scale national research projects AI Platform Concept, AI Validation, AI Delta Learning, and AI Data Tooling, contributing research in robust semantic segmentation, monocular depth estimation, domain adaptation, corner case detection, and learned image coding. Prof. Fingscheidt received numerous national and international awards for his publications; among these, three CVPR workshop best paper awards in 2019, 2020, and 2021. He is interested in where academia meets industry and where machine learning meets highly automated driving. Hanno Gottschalk studied Physics and Mathematics and received diploma degrees from the Ruhr University Bochum in 1995 and 1997, respectively. After finishing his Ph.D. on Mathematical Physics in 1999, he joined the University La Sapienza of Rome for a PostDoc year, before continuing his academic career as PostDoc at Bonn University, where he habilitated in mathematics in 2003. Since 2005, he was lecturer (C2) at the University of Bonn and joined Siemens Energy from 2007–2011 as a Core Competency Owner for probabilistic design. Since 2011, he is Professor for stochastics at the University of Wuppertal. In 2018, he became co-founding Director of the Interdisciplinary Center for Machine Learning and Data Analytics (IZMD) of the University of Wuppertal. His research in the field of deep learning is focused on uncertainty and safety for deep learning perception algorithms. Applications lie in the field of false positive and false negative prediction and detection and retrieval of out of distribution objects. Apart from bi-lateral work with Volkswagen and Aptiv, he is member of the AI Validation, AI Delta Learning, and AI Data Tooling consortia within the AI family of large-scale projects. Hanno Gottschalk brings his special knowledge as statistician and mathematician to the field of automated driving and combines this with cutting edge technology in deep learning. Sebastian Houben studied Mathematics and Computer Science at the University in Hagen and graduated in 2009. He pursued Ph.D. studies at the Ruhr University of Bochum graduating with distinction in 2015. After his postdoctoral studies at the University of Bonn, he was appointed Junior Professor for Applied Computer Science at the Ruhr University of Bochum where he headed the Group of Real-time Computer Vision. As of early 2020, he is a senior researcher with the Fraunhofer Institute for Intelligent Analysis and Information Systems. His research interests cover computer vision and environment perception in autonomous robotics, in particular in the field of automated driving. Within the consortium KI-Absicherung and the competency center Machine-Learning-Rhein-Ruhr (ML2R), he represents the topic Trustworthy AI and is particularly interested in practical methods for explainability of black-box models, uncertainty estimation in neural networks, andvisual analytics. Sebastian Houben believes that artificial intelligence would be an even stronger technology if it was simpler, more robust, and safer to use. His role at Fraunhofer allows him to accompany this transfer from the research laboratories into practical applications.


Best Sellers


Product Details
  • ISBN-13: 9783031012327
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 427
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3031012321
  • Publisher Date: 18 Jun 2022
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Sub Title: Robustness, Uncertainty Quantification, and Insights Towards Safety


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety
Springer International Publishing AG -
Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!