Semantic Similarity from Natural Language and Ontology Analysis
Home > Computing and Information Technology > Computer science > Artificial intelligence > Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)
Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)

Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)


     0     
5
4
3
2
1



International Edition


X
About the Book

Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments---most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli. In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning---intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-the-art approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesauri or ontologies. Semantic measures are widely used today to compare units of language, concepts, instances or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains toward a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterization of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity toward the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented.

Table of Contents:
Preface.- Acknowledgments.- Introduction to Semantic Measures.- Corpus-Based Semantic Measures.- Knowledge-Based Semantic Measures.- Methods and Datasets for the Evaluation of Semantic Measures.- Conclusion and Research Directions.- Bibliography.- Authors' Biographies .

About the Author :
Sèbastien Harispe holds a Master's and PhD in Computer Science from the University of Montpelier II. His research focuses on Artificial Intelligence and more particularly on the diversity of methods which can be used to support decision making from text and knowledge base analysis, e.g. Information and Extraction and Knowledge inference. He proposed several theoretical and practical contributions related to semantic measures. He is the project leader and main developer of the Semantic Measures Library project, a project dedicated to the development of open source software solutions for semantic measures computation and analysis.Sèbastien Harispe holds a Master's and PhD in Computer Science from the University of Montpelier II. His research focuses on Artificial Intelligence and more particularly on the diversity of methods which can be used to support decision making from text and knowledge base analysis, e.g. Information and Extraction and Knowledge inference. He proposed severaltheoretical and practical contributions related to semantic measures. He is the project leader and main developer of the Semantic Measures Library project, a project dedicated to the development of open source software solutions for semantic measures computation and analysis.Stefan is a research member of the LGI2P Research Center team at the School of Mines. He holds a PhD in Computer Science from University Joseph Fourier, Grenoble (France), dealing with geometric properties of graphs. His research focuses on mathematical models for optimization, image treatment, evolutionary algorithms and convexity in discrete structures such as graphs.Jacky Montmain received the Master's degree from the Ecole Nationale Superieure d'Ingenieurs Electriciens de Grenoble France in 1987 and a PhD from the National Polytechnic Institute in 1992; both in control theory. He was a research engineer at the French Atomic Energy Commission from 1991 to 2005 where he was appointed as Senior Expert in the field of Mathematics, Computer Sciences, Software, and System Technologies in 2003. He is currently a Professor at the School of Mines. His research interests include the application of artificial intelligence techniques to model-based diagnosis and supervision, industrial performance improvement, multicriteria and fuzzy approaches to decision-making.


Best Sellers


Product Details
  • ISBN-13: 9783031010286
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 238
  • Returnable: N
  • Width: 191 mm
  • ISBN-10: 3031010280
  • Publisher Date: 26 May 2015
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Human Language Technologies


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)
Springer International Publishing AG -
Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Semantic Similarity from Natural Language and Ontology Analysis: (Synthesis Lectures on Human Language Technologies)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!