Mining Structures of Factual Knowledge from Text
Home > Computing and Information Technology > Databases > Data mining > Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)
Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)

Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)


     0     
5
4
3
2
1



International Edition


X
About the Book

The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora. Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-valuemining and information extraction. This book introduces this new research frontier and points out some promising research directions.

Table of Contents:
Acknowledgments.- Introduction.- Background.- Literature Review.- Entity Recognition and Typing with Knowledge Bases.- Fine-Grained Entity Typing with Knowledge Bases.- Synonym Discovery from Large Corpus.- Joint Extraction of Typed Entities and Relationships.- Pattern-Enhanced Embedding Learning for Relation Extraction.- Heterogeneous Supervision for Relation Extraction.- Indirect Supervision: Leveraging Knowledge from Auxiliary Tasks.- Mining Entity Attribute Values with Meta Patterns.- Open Information Extraction with Global Structure Cohesiveness.- Open Information Extraction with Global Structure Cohesiveness.- Applications.- Conclusions.- Vision and Future Work.- Bibliography.- Authors' Biographies.

About the Author :
Xiang Ren is an Assistant Professor in the Department of Computer Science at USC, affiliated faculty at USC ISI, and a part-time data science advisor at Snap Inc. At USC, Xiang is part of the Machine Learning Center, NLP community, and Center on Knowledge Graphs. Prior to that, he was a visiting researcher at Stanford University, and received his Ph.D. in Computer Science from University of Illinois at Urbana-Champaign. His research develops computational methods and systems that extract machine-actionable knowledge from massive unstructured data (e.g., text data), and particular focuses on problems in the space of modeling sequence and graph data under weak supervision (learning with partial/noisy labels, and semi-supervised learning) and indirect supervision (multi-task learning, transfer learning, and reinforcement learning). Xiang's research has been recognized with several prestigious awards including a Yahoo!-DAIS Research Excellence Award, a Yelp Dataset Challenge award, a C. W. Gear Outstanding Graduate Student Award and a David J. Kuck Outstanding M.S. Thesis Award. Technologies he developed have been transferred to U.S. Army Research Lab, National Institute of Health, Microsoft, Yelp, and TripAdvisor.Jiawei Han is the Abel Bliss Professor in the Department of Computer Science, University of Illinois at Urbana-Champaign. He has been researching into data mining, information network analysis, database systems, and data warehousing, with over 900 journal and conference publications. He has chaired or served on many program committees of international conferences in most data mining and database conferences. He also served as the founding Editor-In-Chief of ACM Transactions on Knowledge Discovery from Data and the Director of Information Network Academic Research Center supported by U.S. Army Research Lab (2009-2016), and is the co-Director of KnowEnG, an NIH funded Center of Excellence in Big Data Computing since 2014. He is a Fellow of ACM, a Fellow of IEEE, and received 2004 ACM SIGKDD Innovations Award, 2005 IEEE Computer Society Technical Achievement Award, and 2009 M. Wallace McDowell Award from IEEE Computer Society. His co-authored book Data Mining:Concepts and Techniques has been adopted as a popular textbook worldwide.


Best Sellers


Product Details
  • ISBN-13: 9783031007842
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 183
  • Returnable: Y
  • Sub Title: An Effort-Light Approach
  • ISBN-10: 3031007840
  • Publisher Date: 26 Jun 2018
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Data Mining and Knowledge Discovery
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)
Springer International Publishing AG -
Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mining Structures of Factual Knowledge from Text: An Effort-Light Approach(Synthesis Lectures on Data Mining and Knowledge Discovery)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!