Probabilistic Databases by Christopher Re at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer hardware > Network hardware > Probabilistic Databases: (Synthesis Lectures on Data Management)
36%
Probabilistic Databases: (Synthesis Lectures on Data Management)

Probabilistic Databases: (Synthesis Lectures on Data Management)


     0     
5
4
3
2
1



Available


X
About the Book

Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques

Table of Contents:
Overview.- Data and Query Model.- The Query Evaluation Problem.- Extensional Query Evaluation.- Intensional Query Evaluation.- Advanced Techniques.

About the Author :
Dan Suciu is a Professor in Computer Science at the University of Washington. He received his Ph.D. from the University of Pennsylvania in 1995, then was a principal member of the technical staff at AT&T Labs until he joined the University of Washington in 2000. Professor Suciu is conducting research in data management, with an emphasis on topics that arise from sharing data on the Internet, such as management of semistructured and heterogeneous data, data security, and managing data with uncertainties. He is a co-author of the book Data on the Web: from Relations to Semistructured Data and XML. He holds twelve US patents, received the 2000 ACM SIGMOD Best Paper Award, the 2010 PODS Ten Years Best paper award, and is a recipient of the NSF Career Award and of an Alfred P. Sloan Fellowship. Suciu's PhD students Gerome Miklau and Christopher Re received the ACM SIGMOD Best Dissertation Award in 2006 and 2010, respectively, and Nilesh Dalvi was a runner up in 2008. Dan Olteanu is a University Lecturer (equivalent of Assistant Professor in North America) in the Department of Computer Science at the University of Oxford and Fellow of St. Cross College since September 2007. He received his Dr. rer. nat. in Computer Science from Ludwig Maximilian University of Munich in 2005. Before joining Oxford, he was post-doctoral researcher with Professor Christoph Koch at Saarland University, visiting scientist at Cornell University, and temporary professor at Ruprecht Karl University in Heidelberg. His main research is on theoretical and system aspects of data management, with a current focus on Web data, provenance information, and probabilistic databases. Christopher (Chris) Re is currently an Assistant Professor in the department of Computer Sciences at the University of Wisconsin-Madison. The goal of his work is to enable users and developers to build applications that more deeply understand data. In many applications, machines can only understand the meaning of data statistically, e.g., user-generated text or data from sensors. To attack this challenge, Chris's recent work is to build a system, Hazy, that integrates a handful of statistical operators with a standard relational database management system. To support this work, Chris received the NSF CAREER Award in 2011. Chris received his PhD from the University of Washington, Seattle under the supervision of Dan Suciu. For his PhD work in the area of probabilistic data management, Chris received the SIGMOD 2010 Jim Gray Dissertation Award. His PhD work produced two systems: Mystiq, a system to manage relational probabilistic data, and Lahar, a streaming probabilistic database. Christoph Koch is a Professor of Computer Science at Ecole Polytechnique Federale de Lausanne (EPFL) in Lausanne, Switzerland. He is interested in both the theoretical and systems-oriented aspects of data management, and he currently works on managing uncertain and probabilistic data, research at the intersection of databases, programming languages, and compilers, community data management systems, and data-driven games. He received his PhD from TU Vienna, Austria, in 2001, for research done at CERN, Switzerland and subsequently held positions at TU Vienna (2001-2002; 2003-2005), the University of Edinburgh (2002-2003), Saarland University (2005-2007), and Cornell University (2006; 2007-2010), before joining EPFL in 2010. He won best paper awards at PODS 2002, and SIGMOD 2011, a Google Research Award (2009), and has been PC co-chair of DBPL 2005, WebDB 2008, and ICDE 2011.


Best Sellers


Product Details
  • ISBN-13: 9783031007514
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 164
  • Returnable: Y
  • Width: 191 mm
  • ISBN-10: 3031007514
  • Publisher Date: 01 Jun 2011
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Data Management


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Probabilistic Databases: (Synthesis Lectures on Data Management)
Springer International Publishing AG -
Probabilistic Databases: (Synthesis Lectures on Data Management)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Probabilistic Databases: (Synthesis Lectures on Data Management)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!