Lifelong Machine Learning, Second Edition - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
37%
Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)


     0     
5
4
3
2
1



Available


X
About the Book

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent.

Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks--which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning--most notably, multi-task learning, transfer learning, and meta-learning--because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.



Table of Contents:
Preface.- Acknowledgments.- Introduction.- Related Learning Paradigms.- Lifelong Supervised Learning.- Continual Learning and Catastrophic Forgetting.- Open-World Learning.- Lifelong Topic Modeling.- Lifelong Information Extraction.- Continuous Knowledge Learning in Chatbots.- Lifelong Reinforcement Learning.- Conclusion and Future Directions.- Bibliography.- Authors' Biographies.

About the Author :
Zhiyuan Chen completed his Ph.D., titled ""Lifelong Machine Learning for Topic Modeling and Classification,"" at the University of Illinois at Chicago under the direction of Professor Bing Liu. He joined Google in 2016. His research interests include machine learning, natural language processing, text mining, data mining, and auction algorithms. He has proposed several lifelong learning algorithms to automatically mine information from text documents, and published more than 15 full research papers in premier conferences such as KDD, ICML, ACL, WWW, IJCAI, and AAAI. He has also given three tutorials about lifelong machine learning at IJCAI-2015, KDD-2016, and EMNLP-2016. He has served as a PC member for many prestigious natural language processing, data mining, AI, and Web research conferences. In recognition of his academic contributions, he was awarded Fifty For The Future Award from the Illinois Technology Foundation in 2015.Bing Liu is a Distinguished Professor of Computer Science at the University of Illinois at Chicago. He received his Ph.D. in Artificial Intelligence from the University of Edinburgh. His research interests include lifelong machine learning, sentiment analysis and opinion mining, data mining, machine learning, and natural language processing. He has published extensively in top conferences and journals in these areas. Two of his papers have received 10-year Test-of-Time awards from KDD, the premier conference of data mining and data science. He has also authored three books: one on Web data mining and two on sentiment analysis. Some of his work has been widely reported in the popular press, including a front-page article in the New York Times. On professional services, he served as the Chair of ACM SIGKDD from 2013-2017, as program chair of many leading data mining related conferences, including KDD, ICDM, CIKM, WSDM, SDM, and PAKDD, as associate editor of many leading journals such as TKDE, TKDD, TWEB, and DMKD, and as area chair or senior PC member of numerous natural language processing, AI, Web research, and data mining conferences. He is a Fellow of the ACM, AAAI, and IEEE.


Best Sellers


Product Details
  • ISBN-13: 9783031004537
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Series Title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  • ISBN-10: 3031004531
  • Publisher Date: 14 Aug 2018
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 187
  • Returnable: Y
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Springer International Publishing AG -
Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Lifelong Machine Learning, Second Edition: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!