Representation Discovery using Harmonic Analysis
Home > Computing and Information Technology > Computer science > Artificial intelligence > Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)


     0     
5
4
3
2
1



International Edition


X
About the Book

Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions

Table of Contents:
Overview.- Vector Spaces.- Fourier Bases on Graphs.- Multiscale Bases on Graphs.- Scaling to Large Spaces.- Case Study: State-Space Planning.- Case Study: Computer Graphics.- Case Study: Natural Language.- Future Directions.

About the Author :
Dr. Sridhar Mahadevan is an Associate Professor in the Department of Computer Science at the University of Massachusetts, Amherst. He received his PhD from Rutgers University in 1990. Professor Mahadevan's research interests span several subfields of artificial intelligence and computer science, including machine learning, multi-agent systems, planning, perception, and robotics. His PhD thesis introduced the learning apprentice model of knowledge acquisition from experts, as well as a rigorous study of concept learning with prior determination knowledge using the framework of Probably Approximately Correct (PAC) learning. In 1993, he co-edited (with Jonathan Connell) the book Robot Learning published by Kluwer Academic Press, one of the first books on the application of machine learning to robotics. Over the past decade, his research has centered around Markov decision processes and reinforcement learning, where his papers are among the most cited in the field. His recent work on spectral and wavelet methods for Markov decision processes has generated much attention, leading to a unified framework for learning representation and behavior. Professor Mahadevan is an Associate Editor for the Journal of Machine Learning Research. Previously, he served for many years as an Associate Editor for Journal of AI Research and the Machine Learning Journal. He has been on numerous program committees for AAAI, ICML, IJCAI, NIPS, ICRA, and IROS conferences, including area chair for at AAAI, ICML, and NIPS conferences. In 2001, he co-authored a paper with his students Rajbala Makar and Mohammad Ghavamzadeh that received the best student paper award in the 5th International Conference on Autonomous Agents. In 1999, he co-authored a paper with Gang Wang that received the best paper award (runner-up) at the 16th International Conference on Machine Learning. He was an invited tutorial speaker at ICML 2006, IJCAI 2007, and AAAI 2007.


Best Sellers


Product Details
  • ISBN-13: 9783031004186
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 147
  • Returnable: N
  • Width: 191 mm
  • ISBN-10: 3031004183
  • Publisher Date: 08 Jul 2008
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Synthesis Lectures on Artificial Intelligence and Machine Learning


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Springer International Publishing AG -
Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Representation Discovery using Harmonic Analysis: (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!