Differential Equations and Population Dynamics I - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)
Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)

Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book presents the basic theoretical concepts of dynamical systems with applications in population dynamics. Existence, uniqueness and stability of solutions, global attractors, bifurcations, center manifold and normal form theories are discussed with cutting-edge applications, including a Holling's predator-prey model with handling and searching predators and projecting the epidemic forward with varying level of public health interventions for COVID-19.

As an interdisciplinary text, this book aims at bridging the gap between mathematics, biology and medicine by integrating relevant concepts from these subject areas, making it self-sufficient for the reader. It will be a valuable resource to graduate and advance undergraduate students for interdisciplinary research in the area of mathematics and population dynamics.



Table of Contents:
Part I Linear Differential and Difference Equations: 1 Introduction to Linear Population Dynamics.- 2 Existence and Uniqueness of Solutions.- 3 Stability and Instability of Linear.- 4 Positivity and Perron-Frobenius's Theorem.- Part II Non-Linear Differential and Difference Equations: 5 Nonlinear Differential Equation.- 6 Omega and Alpha Limit.- 7 Global Attractors and Uniformly.- 8 Linearized Stability Principle and Hartman-Grobman's Theorem.- 9 Positivity and Invariant Sub-region.- 10 Monotone semiflows.- 11 Logistic Equations with Diffusion.- 12 The Poincare-Bendixson and Monotone Cyclic Feedback Systems.- 13 Bifurcations.- 14 Center Manifold Theory and Center Unstable Manifold Theory.- 15 Normal Form Theory.- Part III Applications in Population Dynamics: 16 A Holling's Predator-prey Model with Handling and Searching Predators.- 17 Hopf Bifurcation for a Holling's Predator-prey Model with Handling and Searching Predators.- 18 Epidemic Models with COVID-19.

About the Author :

Arnaud Ducrot is professor of mathematics at the University Le Havre Normandie, France. His research interests include analysis, dynamical systems and mathematical aspects of population dynamics and the natural sciences.

Quentin Griette is an associate professor in mathematics at the University of Bordeaux, France. His areas of expertise include ordinary differential equations, reaction-diffusion systems and the numerical computation of their solutions.

Zhihua Liu is a professor of mathematics at Beijing Normal University, China. Her research interests include differential equations, dynamical systems and applications in epidemics and population dynamics.

Pierre Magal is professor of mathematics at the University of Bordeaux, France. His research interests include differential equations, dynamical systems, numerical simulations and mathematical biology.


Best Sellers


Product Details
  • ISBN-13: 9783030981358
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 458
  • Returnable: N
  • Sub Title: Introductory Approaches
  • ISBN-10: 3030981355
  • Publisher Date: 21 Jun 2022
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: Lecture Notes on Mathematical Modelling in the Life Sciences
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)
Springer Nature Switzerland AG -
Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Differential Equations and Population Dynamics I: Introductory Approaches(Lecture Notes on Mathematical Modelling in the Life Sciences)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!