Buy Cohesive Subgraph Search Over Large Heterogeneous Information Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Information retrieval > Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)
Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)

Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)


     0     
5
4
3
2
1



International Edition


X
About the Book

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs. The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas. This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.

Table of Contents:
Introduction.- Preliminaries.- CSS on Bipartite Networks.- CSS on Other General HINs.- Comparison Analysis.- Related Work on CSMs and solutions.- Future Work and Conclusion.

About the Author :
Yixiang Fang is an associate professor in the School of Data Science, Chinese University of Hong Kong, Shenzhen. He received PhD in computer science from the University of Hong Kong in 2017. After that, he worked as a research associate in the School of Computer Science and Engineering, University of New SouthWales, with Prof. Xuemin Lin. His research interests include querying, mining, and analytics of big graph data and big spatial data. He has published extensively in the areas of database and data mining, and most of his papers were published in toptier conferences (e.g., PVLDB, SIGMOD, ICDE, NeurIPS, and IJCAI) and journals(e.g., TODS, VLDBJ, and TKDE), and one paper was selected as best paper at SIGMOD 2020. He received the 2021 ACM SIGMOD Research Highlight Award. Yixiang is an editorial board member of the journal Information & Processing Management (IPM). He has also served as program committeemember for several top conferences (e.g., ICDE, KDD, AAAI, and IJCAI) and invited reviewer for top journals (e.g., TKDE, VLDBJ, and TOC) in the areas of database and data mining. Kai Wang is an Assistant Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He received his BSc degree from Zhejiang University in 2016 and his PhD degree from the University of New South Wales in 2020, both in computer science. His research interests lie in big data analytics, especially for the big graph and spatial data. Most of his research works have been publishedin top-tier database conferences (e.g., SIGMOD, PVLDB, and ICDE) and journals (e.g., VLDBJ and TKDE). Xuemin Lin is a Chair Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He is a Fellow of IEEE. He received his BSc degree in applied math from Fudan University in 1984 and his PhD degree in computer science from the University of Queensland in 1992. Currently, he is the editorin-chief of IEEE Transactions on Knowledge and Data Engineering. His principal research areas are databases and graph visualization. Wenjie Zhang is a professor and ARC Future Fellow in the School of Computer Science and Engineering at the University of New South Wales in Australia. She received her PhD from the University of New South Wales in 2010. She is an associate editor of IEEE Transactions on Knowledge and Data Engineering. Her research interests lie in large-scale data processing, especially in query processing over spatial and graph/network data.


Best Sellers


Product Details
  • ISBN-13: 9783030975678
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 74
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 3030975673
  • Publisher Date: 07 May 2022
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: SpringerBriefs in Computer Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)
Springer Nature Switzerland AG -
Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Cohesive Subgraph Search Over Large Heterogeneous Information Networks: (SpringerBriefs in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!