Knowledge Science, Engineering and Management
Home > Computing and Information Technology > Computer science > Artificial intelligence > Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)
Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)

Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)

|
     0     
5
4
3
2
1




International Edition


About the Book

This three-volume set constitutes the refereed proceedings of the 14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021, held in Tokyo, Japan, in August 2021.The 164 revised full papers were carefully reviewed and selected from 492 submissions. The contributions are organized in the following topical sections: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management with optimization and security.

Table of Contents:
Knowledge Science with Learning and AI (KSLA).- Research on Innovation Trends of AI Applied to Medical Instruments Using Informetrics Based on Multi-Sourse Information.- Extracting Prerequisite Relations among Wikipedia Concepts using the Clickstream Data.- Clustering Massive-categories and Complex Documents via Graph Convolutional Network.- Structure-enhanced Graph Representation Learning for Link Prediction in Signed Networks.- A Property-based Method for Acquiring Commonsense Knowledge.- Multi-hop Learning promote Cooperation in Multi-agent Systems.- FedPS: Model Aggregation with Pseudo Samples.- Dense Incremental Extreme Learning Machine with Accelerating.- Amount and Proportional Integral Differential.- Knowledge-based Diverse Feature Transformation For Few-shot Relation Classification.- Community Detection In Dynamic Networks: A Novel Deep Learning Method.- Additive Noise Model Structure Learning Based on Rank Statistics.- A MOOCs Recommender System Based onUser’s Knowledge Background.- TEBC-Net: An effective relation extraction approach for simple question answering over knowledge graphs.- Representing Knowledge Graphs with Gaussian Mixture Embedding.- A Semi-supervised Multi-objective Evolutionary Algorithm for Multi-layer Network Community Detection.- Named Entity Recognition Based on Reinforcement Learning and Adversarial Training.- Improved Partitioning Graph Embedding Framework for Small Cluster.- A Framework of Data Fusion through Spatio-temporal Knowledge Graph.- SEGAR: Knowledge Graph Augmented Session-based Recommendation.- Symbiosis: A Novel Framework for Integrating Hierarchies from Knowledge Graph into Recommendation System.- An Ensemble Fuzziness-based Online Sequential Learning Approach and Its Application.- GASKT: A Graph-based Attentive Knowledge-Search Model for Knowledge Tracing.- Fragile Neural Network Watermarking with Trigger Image Set.- Introducing Graph Neural Networks for Few-Shot Relation Prediction in Knowledge Graph Completion Task.- A Research Study on Running Machine Learning Algorithms on Big Data with Spark.- Attentional Neural Factorization Machines for Knowledge Tracing.- Node-Image CAEï¼A Novel Embedding Method via Convolutional Auto-Encoder and High-Order Proximities.- EN-DIVINE: An Enhanced Generative Adversarial Imitation Learning Framework for Knowledge Graph Reasoning.- Knowledge Distillation via Channel Correlation Structure.- Feature Interaction Convolutional Network for Knowledge Graph Embedding.- Towards a Modular Ontology for Cloud Consumer Review Mining.- Identification of Critical Nodes in Urban Transportation Network through Network Topology and Server Routes.- Graph Ensemble Networks for Semi-Supervised Embedding Learning.- Rethinking the Information inside Documents for Sentiment Classification.- Dependency Parsing Representation Learning for Open Information Extraction.- Hierarchical Policy Network with Multi-Agent for Knowledge Graph Reasoning Based on Reinforcement Learning.- Inducing Bilingual Word Representations for Non-Isomorphic Spaces by an Unsupervised Way.- A Deep Learning Model Based on Neural Bag-of-words Attention for Sentiment Analysis.- Graph Attention Mechanism with Cardinality Preservation for Knowledge Graph Completion.- Event Relation Reasoning Based on Event Knowledge Graph.- PEN4Rec: Preference Evolution Networks for Session-based Recommendation.- HyperspherE: An Embedding Method for Knowledge Graph Completion Based on Hypersphere.- TroBo: A Novel Deep Transfer Model for Enhancing Cross-project Bug Localization.- A Neural Language Understanding for Dialogue State Tracking.- Spirit Distillation: A Model Compression Method with Multi-domain Knowledge Transfer.- Knowledge Tracing with Exercise-Enhanced Key-Value Memory Networks.- Entity Alignment between Knowledge Graphs Using Entity Type Matching.- Text-Aware Recommendation Model Based on Multi-Attention Neural Network.- Chinese Named Entity Recognition Based on Gated Graph Neural Network.- Learning a Similarity Metric Discriminatively with Application to Ancient Character Recognition.- Incorporating Global Context into Multi-task Learning for Session-based Recommendation.- Exploring Sequential and Collaborative Contexts for Next Point-of-Interest Recommendation.- Predicting User Preferences via Heterogeneous Information Network and Metric Learning.- An IoT Ontology Class Recommendation Method Based on Knowledge Graph.- Ride-Sharing Matching of Commuting Private Car using Reinforcement Learning.- Optimization of Remote Desktop with CNN Based Image Compression Model.


Best Sellers


Product Details
  • ISBN-13: 9783030821357
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 710
  • Returnable: Y
  • Series Title: 12815 Lecture Notes in Computer Science
  • Width: 155 mm
  • ISBN-10: 3030821358
  • Publisher Date: 21 Jul 2021
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: 12815 Lecture Notes in Computer Science
  • Sub Title: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)
Springer Nature Switzerland AG -
Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, August 14–16, 2021, Proceedings, Part I(12815 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!