Water in Biomechanical and Related Systems
Home > Mathematics and Science Textbooks > Biology, life sciences > Life sciences: general issues > Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)
Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)

Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)


     0     
5
4
3
2
1



International Edition


X
About the Book

The contributed volume puts emphasis on a superior role of water in (bio)systems exposed to a mechanical stimulus. It is well known that water plays an extraordinary role in our life. It feeds mammalian or other organism after distributing over its whole volume to support certain physiological and locomotive (friction-adhesion) processes to mention but two of them, both of extreme relevance. Water content, not only in the mammalian organism but also in other biosystems such as whether those of soil which is equipped with microbiome or the ones pertinent to plants, having their own natural network of water vessels, is always subjected to a force field.The decisive force field applied to the biosystems makes them biomechanically agitated irrespective of whether they are subjected to external or internal force-field conditions. It ought to be noted that the decisive mechanical factor shows up in a close relation with the space-and-time scale in which it is causing certain specific phenomena to occur.The scale problem, emphasizing the range of action of gravitational force, thus the millimeter or bigger force vs. distance scale, is supposed to enter the so-called macroscale approach to water transportation through soil or plants’ roots system. It is merely related to a percolation problem, which assumes to properly inspect the random network architecture assigned to the biosystems invoked. The capillarity conditions turn out to be of prior importance, and the porous-medium effect has to be treated, and solved in a fairly approximate way.The deeper the scale is penetrated by a force-exerting and hydrated agent the more non-gravitational force fields manifest. This can be envisaged in terms of the corresponding thermodynamic (non-Newtonian) forces, and the phenomena of interest are mostly attributed to suitable changes of the osmotic pressure. In low Reynolds number conditions, thus inthe (sub)micrometer distance-scale zone, they are related with the corresponding viscosity changes of the aqueous, e.g. cytoplasmatic solutions, of semi-diluted and concentrated (but also electrolytic) characteristics. For example, they can be observed in articulating systems of mammals, in their skin, and to some extent, in other living beings, such as lizards, geckos or even insects. Through their articulating devices an external mechanical stimulus is transmitted from macro- to nanoscale, wherein the corresponding osmotic-pressure conditions apply. The content of the proposed work can be distributed twofold. First, the biomechanical mammalian-type (or, similar) systems with extraordinary relevance of water for their functioning will be presented, also including a presentation of water itself as a key physicochemical system/medium. Second, the suitably chosen related systems, mainly of soil and plant addressing provenience, will be examined thoroughly. As a common denominator of all of them, it is proposed to look at their hydrophobic and/or (de)hydration effects, and how do they impact on their basic mechanical (and related, such as chemo-mechanical or piezoelectric, etc.) properties. An additional tacit assumption employed throughout the monograph concerns statistical scalability of the presented biosystems which is equivalent to take for granted a certain similarity between local and global system’s properties, mostly those of mechanical nature. The presented work’s chapters also focus on biodiversity and ecological aspects in the world of animals and plants, and the related systems. The chapters’ contents underscore the bioinspiration as the key landmark of the proposed monograph.

Table of Contents:
Chapter1. Current overview on the role of water in biomechanical and related systems.- Chapter2. Sense and nonsense about water.- Chapter3.  Water nanoclusters in cosmology, astrobiology, the RNA world and biomedicine: the universe as a biosystem.- Chapter4. Solvent induced effects on protein folding.- Chapter5 Analysis of protein intramolecular and solvent bonding on example of major sonovital fluid component.- Chapter6. Water behavior near the lipid bilayer.- Chapter7.  Water molecules organization surrounding ions, amphiphilic protein residues, and hyaluronan.- Chapter8.  Pathological water science – four examples and what they have in common.- Chapter9.  Powdery mildew fungus erysiphe alphitoides turns oak leaf surface to the higly hydrophobic state.- Chapter10. Physics of suction cups in air and in water.- Chapter 11. Water transport through synthetic membranes as inspired by transport through biological membranes.- Chapter 12. Travelling waves connected to blood flow and motion of arterial walls.- Chapter 13. Fractal properties of flocs, fitration cakes and biofilms in water and wastewater treatment process.- Chapter 14.  Soil hydrology.- Chapter 15.  External solicitations, pollution and patterns of water stock: remarks and some modeling proposals.- Chapter 16. Water on livestock: biological role and global perspective on water demand and supply chains.

About the Author :
Adam Gadomski (born in 1959, in Katowice, Poland), a full professor of physics at the UTP University of Science and Technology, Bydgoszcz, Poland, leads a group of researchers focused on the modeling of physicochemical and biophysical processes. He specializes in statistical soft-condensed matter physics, and works in computational physics and physical computation problems, with an emphasis placed on biomaterials with a structure–property and function relationship. He is an editor for three open access journals: Frontiers-Computational Physics, Entropy and an associate editor for Frontiers in Mechanical Engineering. He is also an editor to numerous special issues publlished in Physica A, Biosystems (two times), Entropy, Molecules, etc. He published about 150 papers, mainly in reviewed international journals, and (co)authored chapters to the books and papers to journal proceedings. 


Best Sellers


Product Details
  • ISBN-13: 9783030672263
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 334
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 3030672263
  • Publisher Date: 23 Apr 2021
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: 17 Biologically-Inspired Systems


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)
Springer Nature Switzerland AG -
Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Water in Biomechanical and Related Systems: (17 Biologically-Inspired Systems)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!