A Machine Learning based Pairs Trading Investment Strategy
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)
A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)

A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)


     0     
5
4
3
2
1



Available


X
About the Book

This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.

Table of Contents:
Introduction.- Pairs Trading - Background and Related Work.- Proposed Pairs Selection Framework.- Proposed Trading Model.- Implementation.- Results.- Conclusions and Future Work.

About the Author :
Simão Sarmento received his B.Sc. and M.Sc. degrees in Electrical and Computer Engineering from the Instituto Superior Técnico (IST), University of Lisbon, Portugal, in 2017 and 2019, respectively. In 2018, he completed the first year of his master's degree at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, where he focused on machine learning. He also worked at the Research and Development Department of Feedzai from July to September 2018, investigating the application of deep learning to fight financial fraud. Nuno Horta (S'89-M'97-SM'11) received his Licenciado, M.Sc., Ph.D. and Postdoctorate degrees in Electrical and Computer Engineer from the Instituto Superior Técnico (IST), University of Lisbon, Portugal, in 1989, 1992, 1997 and 2014, respectively. In March 1998, he joined the IST Electrical and Computer Engineering Department, where he is currently an Associate Professor. Since 1998, he has also been Head of the Integrated Circuits Group at the Instituto de Telecomunicações. He has authored or co-authored more than 150 publications including books, book chapters, international journal papers and conference papers. He has also participated as a researcher or coordinator in several national and European R&D projects. He was General Chair of AACD 2014, PRIME 2016 and SMACD 2016 and was a member of the organizing and technical program committees of several other conferences, e.g., IEEE ISCAS, IEEE LASCAS, DATE, NGCAS, etc. He is an Associated Editor of Integration, The VLSI Journal, and serves as a reviewer for several prestigious publications, including IEEE TCAD, IEEE TEC, IEEE TCAS, ESWA, and ASC. His research interests include analog and mixed-signal IC design, analog IC design automation, soft computing and data science.


Best Sellers


Product Details
  • ISBN-13: 9783030472504
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 104
  • Returnable: N
  • Series Title: SpringerBriefs in Applied Sciences and Technology
  • ISBN-10: 3030472507
  • Publisher Date: 14 Jul 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Series Title: SpringerBriefs in Applied Sciences and Technology
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)
Springer Nature Switzerland AG -
A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Machine Learning based Pairs Trading Investment Strategy: (SpringerBriefs in Applied Sciences and Technology)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!