The Hundred-Page Machine Learning Book
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > The Hundred-Page Machine Learning Book
The Hundred-Page Machine Learning Book

The Hundred-Page Machine Learning Book


     0     
5
4
3
2
1



International Edition


X
About the Book

Master machine learning through clarity, not complexity―in a book engineered to teach with exceptional conciseness. Translated into 11 languages and used in thousands of universities worldwide, this book takes a unique approach: it assumes that your time is valuable. Instead of drowning you in theory or skimming the surface, it delivers a complete education in modern machine learning, focusing on what matters in practice. From fundamental algorithms that form the backbone of many applications, to cutting-edge deep learning and neural networks, you'll understand how these tools work and how to use them. What sets this book apart is its careful progression through key concepts. You'll start with essential mathematical concepts and gradually progress through the most practically important machine learning algorithms. You'll learn practical skills like feature engineering, regularization, handling imbalanced datasets, ensembles, and model evaluation that help turn theory into working systems. The book covers not just supervised learning, but also clustering, topic modeling, metric learning, learning to rank, and recommendation systems, giving you a complete toolkit for solving modern machine learning challenges. This isn't just another theoretical textbook. Every chapter reflects the author's real-world experience, focusing on techniques that work in practice. Whether you're building a recommendation system, analyzing customer data, or working with images and text, you'll find practical guidance here. This isn't a high-level overview either. The book explores each concept with precisely the right level of technical detail-enough to create those crucial "a-ha!" moments of understanding, but not so much that you get overwhelmed by mathematical notation or theoretical abstractions. It hits that sweet spot where complex ideas click into place naturally, making it valuable for both newcomers looking to build a strong foundation and experienced practitioners seeking to expand their toolkit. What's Inside Supervised and unsupervised learning algorithms and neural networks Algorithm and math explained intuitively without losing important detail Practical techniques for model building, troubleshooting, and evaluation Advanced topics like ensembles, recommender systems, metric learning, and more About the Reader The book assumes a basic foundation in college-level mathematics. However, it's entirely self-contained, introducing all necessary mathematical concepts through intuitive explanations. This approach ensures that readers with basic mathematical knowledge can follow along without getting lost in complex equations. Endorsed by Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world, Aurélien Géron, Senior AI Engineer, author of the bestseller Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, and other industry leaders. Read endorsements on themlbook.com

About the Author :
Andriy Burkov is the author of "The Hundred-Page Machine Learning Book" and "Machine Learning Engineering," both of which became #1 Best Sellers on Amazon. He holds a Ph.D. in Artificial Intelligence and is a recognized expert in machine learning and natural language processing.As a machine learning expert and leader, Andriy has successfully led dozens of production-grade AI projects in different business domains at Fujitsu and Gartner. His previous books have been translated into more than a dozen languages and are used as textbooks in many universities worldwide. His work has impacted millions of machine learning practitioners and researchers worldwide.Currently, Andriy is the Head of Machine Learning at TalentNeuron, where he develops AI solutions for talent marketplace analytics. He uses language models and other machine learning tools to analyze billions of job postings across 30+ languages in near real time.

Review :
"Burkov has undertaken a very useful but impossibly hard task in reducing all of machine learning to 100 pages. He succeeds well in choosing the topics--both theory and practice--that will be useful to practitioners, and for the reader who understands that this as the first 100 (or actually 150) pages you will read, not the last, provides a solid introduction to the field." -- Peter Norvig, Research Director at Google, author of the most popular artificial intelligence textbook in the world Artificial Intelligence: A Modern Approach "The breadth of topics the book covers is amazing for just 100 pages (plus few bonus pages!). Burkov doesn't hesitate to go into the math equations: that's one thing that short books usually drop. I really liked how the author explains the core concepts in just a few words. The book can be very useful for newcomers in the field, as well as for old-timers who can gain from such a broad view of the field." -- Aurélien Géron, Senior Artificial Intelligence Engineer, author of a #1 Amazon bestseller Hands-On Machine Learning with Scikit-Learn and TensorFlow "This book is a great introduction to machine learning from a world-class practitioner and LinkedIn superstar Andriy Burkov. He managed to find a good balance between the math of the algorithms, intuitive visualizations, and easy-to-read explanations. This book will benefit the newcomers to the field as a thorough introduction to the fundamentals of machine learning, while the experienced professionals will definitely enjoy the practical recommendations from Andriy's rich experience in the field." -- Karolis Urbonas, Head of Data Science at Amazon "I wish such a book existed when I was a statistics graduate student trying to learn about machine learning. There is the right amount of math which demystify the centerpiece of an algorithm with succinct but very clear descriptions. I'm also impressed by the widespread coverage and good choices of important methods as an introductory book (not all machine learning books mention things like learning to rank or metric learning). Highly recommended to STEM major students or professionals who are interested to get started with machine learning for their analytics projects or preparing for data science interviews." -- Chao Han, VP, Head of R&D at Lucidworks "Whether you want to become a machine learning practitioner or looking for an everyday resource, Andriy's book does a fantastic job of cutting the noise and hitting the tracks and full speed from the first page. It manages to structure all the important concepts from foundations to applications into a relatively quick read and leave the reader engaged at all times. " -- Sujeet Varakhedi, Head of Engineering at eBay "This book provides a great practical guide to get started and execute on ML within a few days without necessarily knowing much about ML apriori. The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue. A wonderful book for engineers who want to incorporate ML in their day-to-day work without necessarily spending an enormous amount of time going through a formal degree program. " -- Deepak Agarwal, VP of Artificial Intelligence at LinkedIn​


Best Sellers


Product Details
  • ISBN-13: 9781999579517
  • Publisher: Andriy Burkov
  • Publisher Imprint: Andriy Burkov
  • Language: English
  • Returnable: N
  • ISBN-10: 1999579518
  • Publisher Date: 11 Jan 2019
  • Binding: Hardback
  • No of Pages: 160
  • Returnable: N


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Hundred-Page Machine Learning Book
Andriy Burkov -
The Hundred-Page Machine Learning Book
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Hundred-Page Machine Learning Book

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!