Non-local Structural Mechanics
Home > Science, Technology & Agriculture > Civil engineering, surveying and building > Non-local Structural Mechanics
Non-local Structural Mechanics

Non-local Structural Mechanics


     0     
5
4
3
2
1



International Edition


X
About the Book

Serving as a review on non-local mechanics, this book provides an introduction to non-local elasticity theory for static, dynamic and stability analysis in a wide range of nanostructures.  The authors draw on their own research experience to present fundamental and complex theories that are relevant across a wide range of nanomechanical systems, from the fundamentals of non-local mechanics to the latest research applications.  

Table of Contents:
Preface xi Chapter 1. Introduction to Non-Local Elasticity 1 1.1. Why the non-local elasticity method for nanostructures? 1 1.2. General modeling of nanostructures  3 1.3. Overview of popular nanostructures  4 1.4. Popular approaches for understanding nanostructures  8 1.5. Experimental methods  9 1.6. Molecular dynamics simulations  9 1.7. Continuum mechanics approach  9 1.8. Failure of classical continuum mechanics 10 1.9. Size effects in properties of small-scale structures  11 1.10. Evolution of size-dependent continuum theories  12 1.11. Concept of non-local elasticity 14 1.12. Mathematical formulation of non-local elasticity  15 1.12.1. Integral form 15 1.12.2. Non-local modulus 17 1.12.3. Differential form equation of non-local elasticity 17 1.13. Non-local parameter 18 1.14. Non-local elasticity theory versus molecular dynamics  19 Chapter 2. Non-local Elastic Rod Theory  21 2.1.Background 21 2.2. Governing equation of motion of the nanorod  24 2.3.Results and discussions  29 Chapter 3. Non-local Elastic Beam Theories 33 3.1. Background 33 3.2. Non-local nanobeam model 36 3.2.1. Non-local Euler–Bernoulli beam theory 36 3.2.2. Non-local Timoshenko beam theory  43 3.2.3. Non-local Reddy beam theory 51 3.3. Torsional vibration of nanobeam  60 3.4. Comparison of the non-local beam theories  64 Chapter 4. Non-local Elastic Plate Theories  69 4.1. Non-local plate for graphene sheets  69 4.2. Non-local plate constitutive relations 69 4.3. Free vibration of single-layer graphene sheets 72 4.3.1. Transverse-free vibration  73 4.3.2. Graphene sheets embedded in an elastic medium  75 4.4. Axially stressed nanoplate non-local theory  78 4.5. In-plane vibration 79 4.6. Buckling of graphene sheets 80 4.6.1. Uniaxial buckling 81 4.6.2. Graphene sheets embedded in an elastic medium  82 4.7. Summary  84 Chapter 5. One-Dimensional Double-Nanostructure-Systems 87 5.1. Background 87 5.2. Revisiting non-local rod theory 90 5.2.1. Equations of motion of double-nanorod-system 91 5.2.2. Solution methodology  94 5.2.3. Clamped-clamped boundary condition  95 5.2.4. Clamped-free (cantilever) boundary condition  96 5.2.5. Longitudinal vibration of auxiliary (secondary) nanorod 98 5.3. Axial vibration of double-rod system 99 5.3.1. Effect of the non-local parameter in the clamped-type DNRS 100 5.3.2. Coupling spring stiffness in DNRS  102 5.3.3. Higher modes of vibration in DNRS 102 5.3.4. Effect of non-local parameter, spring stiffness and higher modes in cantilever-type-DNRS  103 5.4. Summary  104 5.5. Transverse vibration of double-nanobeam-systems 104 5.5.1. Background  105 5.5.2. Non-local double-nanobeam-system 107 5.6. Vibration of non-local double-nanobeam-system  110 5.7. Boundary conditions in non-local double-nanobeam-system  111 5.8. Exact solutions of the frequency equations  113 5.9. Discussions 116 5.9.1. Effect of small scale on vibrating NDNBS  117 5.9.2. Effect of the stiffness of the coupling springs on NDNBS 120 5.9.3. Analysis of higher modes of NDNBS 120 5.10. Summary 121 5.11. Axial instability of double-nanobeam-systems 122 5.11.1. Background 123 5.11.2. Buckling equations of non-local doublenanobeam-systems  124 5.12. Non-local boundary conditions of NDNBS 126 5.13. Buckling states of double-nanobeam-system  128 5.13.1. Out-of-phase buckling load: (w1-w20) 128 5.13.2. In-phase buckling state: (w1– w2=0)  129 5.13.3. One nanobeam is fixed: 130 5.14. Coupled carbon nanotube systems  130 5.15. Results and discussions on the scale-dependent buckling phenomenon 131 5.15. Summary 136 Chapter 6. Double-Nanoplate-Systems 137 6.1. Double-nanoplate-system  137 6.2. Vibration of double-nanoplate-system 139 6.3. Equations of motion for non-local doublenanoplate-system  139 6.4. Boundary conditions in non-local doublenanoplate-system  142 6.5. Exact solutions of the frequency equations  144 6.5.1. Both nanoplates of NDNPS are vibrating out-of-phase:   144 6.5.2. Both nanoplates of NDNPS are vibrating in-phase: 146 6.5.3. One nanoplate of NDNPS is stationary:   147 6.5.4. Discussions  148 6.5.5. Non-local double-nanobeam-system versus non-local double-nanoplate-system  156 6.5.6. Summary  157 6.6. Buckling behavior of double-nanoplate-systems 158 6.6.1. Background  159 6.6.2. Uniaxially compressed double-nanoplate-system  160 6.6.3. Buckling states of double-nanoplate-system 163 6.7. Results and discussion  167 6.7.1. Coupled double-graphene-sheet-system 167 6.7.2. Effect of small scale on NDNPS undergoing compression  168 6.7.3. Effect of stiffness of coupling springs in NDNPS 170 6.7.4. Effect of aspect ratio on NDNPS  173 6.8. Summary  177 Chapter 7. Multiple Nanostructure Systems  179 7.1. Longitudinal vibration of a multi-nanorod system  180 7.1.1. The governing equations of motion  182 7.1.2. Exact solution 185 7.1.3. Asymptotic analysis 191 7.1.4. Numerical examples and discussions 192 7.2. Transversal vibration and stability of a multiplenanobeam system  197 7.2.1. The governing equations of motion  199 7.2.2. Exact solution 202 7.2.3. Asymptotic analysis 209 7.2.4. Numerical examples and discussions 210 7.3. Transversal vibration and buckling of the multinanoplate system  215 7.3.1. The governing equations of motion  217 7.3.2. Exact solutions  221 7.3.3 Asymptotic analysis  227 7.3.4. Numerical results and discussions 227 7.4. Summary  232 Chapter 8. Finite Element Method for Dynamics of Nonlocal Systems  235 8.1. Introduction 236 8.2. Finite element modeling of non-local dynamic systems  239 8.2.1. Axial vibration of nanorods 239 8.2.2. Bending vibration of nanobeams  241 8.2.3. Transverse vibration of nanoplates 243 8.3. Modal analysis of non-local dynamical systems 247 8.3.1. Conditions for classical normal modes  248 8.3.2. Non-local normal modes  250 8.3.3. Approximate non-local normal modes  251 8.4. Dynamics of damped non-local systems  254 8.5. Numerical examples  256 8.5.1. Axial vibration of a single-walled carbon nanotube 256 8.5.2. Bending vibration of a double-walled carbon nanotube 261 8.5.3. Transverse vibration of a single-layer graphene sheet  265 8.6. Summary  269 Chapter 9. Dynamic Finite Element Analysis of Nonlocal Rods: Axial Vibration 271 9.1. Introduction 272 9.2. Axial vibration of damped non-local rods 275 9.2.1. Equation of motion  275 9.2.2. Analysis of damped natural frequencies 277 9.2.3. Asymptotic analysis of natural frequencies  279 9.3. Dynamic finite element matrix 281 9.3.1. Classical finite element of non-local rods 281 9.3.2. Dynamic finite element for damped non-local rod 282 9.4. Numerical results and discussions 285 9.5. Summary  291 Chapter 10. Non-local Nanosensor Based on Vibrating Graphene Sheets 293 10.1. Introduction  294 10.2. Free vibration of graphene sheets 295 10.2.1. Vibration of SLGS without attached mass 297 10.3. Natural vibration of SLGS with biofragment  299 10.3.1. Attached masses are at the cantilever tip  301 10.3.2. Attached masses arranged in a line along the width  301 10.3.3. Attached masses arranged in a line along the length  302 10.3.4. Attached masses arranged with arbitrary angle 302 10.4. Sensor equations and sensitivity analysis  303 10.5. Analysis of numerical results 305 10.6. Summary 311 Chapter 11. Introduction to Molecular Dynamics for Small-scale Structures  313 11.1. Background  313 11.2. Overview of the molecular dynamics simulation method 314 11.3. Acknowledgement  325 Bibliography  327 Index 353

About the Author :
Danilo Karlicic is a Lecturer at the Mechanical Engineering Faculty at the University of Niš, Serbia. Tony Murmu is a Lecturer of Mechanical Engineering at the University of the West of Scotland, United Kingdom. Sondipon Adhikari is the Chair of Aerospace Engineering at the College of Engineering at Swansea University, United Kingdom. Michael McCarthy is Professor of Aeronautical Engineering at the University of Limerick, Ireland.


Best Sellers


Product Details
  • ISBN-13: 9781848215221
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Height: 241 mm
  • No of Pages: 374
  • Returnable: N
  • Weight: 694 gr
  • ISBN-10: 1848215223
  • Publisher Date: 15 Dec 2015
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Width: 163 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Non-local Structural Mechanics
ISTE Ltd and John Wiley & Sons Inc -
Non-local Structural Mechanics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Non-local Structural Mechanics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!