Split Federated Learning for Secure IoT Applications
Home > Computing and Information Technology > Computer networking and communications > Network security > Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)
Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)

Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)


     0     
5
4
3
2
1



International Edition


X
About the Book

New approaches in federated learning and split learning have the potential to significantly improve ubiquitous intelligence in internet of things (IoT) applications. In split federated learning, the machine learning model is divided into smaller network segments, with each segment trained independently on a server using distributed local client data. The split learning method mitigates two fundamental drawbacks of federated learning: affordability, and privacy and security. When running machine learning computation on devices with limited resources, assigning only a portion of the network to train at the client-side minimizes the processing burden, compared to running a complete network as in federated learning. In addition, neither client nor server has full access to the other, which is more secure. This book reviews cutting edge technologies and advanced research in split federated learning. Coverage includes approaches to realizing and evaluating the effectiveness and advantages of federated learning and split-fed learning, the role of this technology in advancing and securing IoTs, advanced research on emerging AI models for preserving the privacy of the data owned by the clients, and the analysis and development of AI mechanisms in IoT architectures and applications. The use of split federated learning in natural language processing, recommendation systems, healthcare systems, emotion detection, smart agriculture, smart transportation and smart cities is discussed. Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies offers useful insights to the latest developments in the field for researchers, engineers and scientists in academia and industry, who are working in computing, AI, data science and cybersecurity with a focus on federated learning, machine learning and deep learning.

Table of Contents:
Chapter 1: Introduction to federated learning, split learning and splitfed learning Chapter 2: Splitfed learning processing for IoT and Big Data applications Chapter 3: Blockchain-driven splitfed learning for data protection in IoT setting Chapter 4: Splitfed learning methods for natural language processing Chapter 5: The role of splitfed learning in recommendation systems Chapter 6: Reconfigurable intelligent surface (RIS)-inspired splitfed learning for over-the-air Chapter 7: Enhancing computational performance in healthcare through federated learning approach Chapter 8: Splitfed learning for multimodal emotion detection Chapter 9: Split federated learning-based educational data analysis Chapter 10: Splitfed learning for smart transportation Chapter 11: Splitfed learning for smart grids Chapter 12: Splitfed learning for smart agriculture Chapter 13: A case study on splitfed learning implementation Chapter 14: Conclusion and future directions

About the Author :
Gururaj Harinahalli Lokesh is an associate professor in the Department of Information Technology and the founder of the Wireless Internetworking Group (WiNG) at the Manipal Institute of Technology, Bengaluru, India. His research interests include blockchain technology, cyber security, wireless sensor networks, ad-hoc networks, IoT, data mining, cloud computing and machine learning. He is an editorial board member of the International Journal of Blockchains and Cryptocurrencies. He has published over 110 research papers in international journals and presented 20 papers at international conferences. He is a senior member of the IEEE, lifetime member of ISTE and CSI, a professional member of the ACM and an ACM distinguished speaker. He holds a PhD degree in Computer Science and Engineering from Visvesvaraya Technological University, Belagavi, India. Geetabai S. Hukkeri is an assistant professor in the Department of Computer Science and Engineering at the Manipal Institute of Technology, Bengaluru, India. Her research interests include artificial intelligence, deep learning, machine learning, big data, computer vision and multimedia information retrieval. She is a member of ACM. She holds a PhD degree in Computer Science and Engineering from Visveswaraya Technological University, Belagavi, India. N.Z. Jhanjhi is a professor at the School of Computer Science, Taylor's University, Malaysia, and is the program director for Postgraduate Research Degree Programmes in Computer Science. Additionally, he directs the Center for Smart Society (CSS5), playing a crucial role in advancing research and academic excellence at the university. He is a distinguished academician, researcher and scientist in computer science, specializing in cybersecurity. Globally recognized among the top 2% of research scientists and ranked among the top three computer science researchers in Malaysia, Prof. Jhanjhi was named an Outstanding Faculty Member by MDEC Malaysia in 2022. His extensive research contributions are reflected in his highly indexed publications in prestigious journals, with a collective research impact factor exceeding 1000. He has authored and edited over 50 research books with renowned publishers including Springer, Elsevier, Taylor and Francis, Wiley and IGI Global USA. Hong Lin is a professor of Computer Science at the University of Houston, Downtown, TX, USA, where he has established the Grid Computing Lab through an NSF MRI grant. He previously worked on large-scale computational biology at Purdue University and network security at Nokia, Inc. His areas of research include parallel computing, multi-agent systems and affective computing. He has published over 100 research papers in international journals and conferences. He is a senior member of the ACM. He holds a PhD in Computer Science from Purdue University, USA.


Best Sellers


Product Details
  • ISBN-13: 9781839539459
  • Publisher: Institution of Engineering and Technology
  • Publisher Imprint: Institution of Engineering and Technology
  • Height: 234 mm
  • Series Title: Security
  • Width: 156 mm
  • ISBN-10: 1839539453
  • Publisher Date: 15 Oct 2024
  • Binding: Hardback
  • Language: English
  • Sub Title: Concepts, frameworks, applications and case studies


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)
Institution of Engineering and Technology -
Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Split Federated Learning for Secure IoT Applications: Concepts, frameworks, applications and case studies(Security)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!