CMOS-Based Sensors and Actuators for Life Science Applications
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)
CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)

CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)


     0     
5
4
3
2
1



International Edition


X
About the Book

Emerging complementary metal-oxide semiconductor (CMOS) technologies and their ongoing downscaling trend have opened an avenue to developing integrated systems for life sciences. They offer great advantages for the monolithic integration of several active elements, and the implementation of millions of biosensors along with their transducers and readout circuits on a single chip. Benefits include the ability to make highly dense systems with high signal-to-noise ratios (SNRs), good accessibility and reliability. Moreover, the huge investment in CMOS foundries and the possibility of the batch production of various devices using CMOS have established it as an economical technology appropriate for the fabrication of affordable platforms for end-users. All these features make CMOS electronics a valuable technology for the implementation of integrated bio-systems such as lab-on-chips (LoCs) and point-of-care (PoC) devices. This book offers deep multidisciplinary knowledge of different types of biosensors and bioactuators. The book covers the design and implementation of CMOS chips, including transducers, readouts and data equation circuitries. It also deals with microfluidic packaging techniques, and biological applications and protocols. The theoretical and practical aspects of CMOS biosensors are discussed, and the fundamentals of microfabrication. Several key life science applications are explored, including optical biosensors, thermal sensors, and a range of actuators. CMOS-Based Sensors and Actuators for Life Science Applications offers a systematic and thorough approach to this complex multidisciplinary topic for researchers and engineers working in the field of microelectronic design and development, particularly those whose work has life sciences applications.

Table of Contents:
Chapter 1: Introduction Chapter 2: Design strategies Chapter 3: CMOS electrodes Chapter 4: CMOS capacitive biosensors Chapter 5: CMOS voltammetric and impedimetric biosensors Chapter 6: Bio-voltage recording Chapter 7: CMOS Bio/Chem field-effect transistor (Bio/ChemFET)-based biosensors Chapter 8: CMOS-based optical biosensors Chapter 9: CMOS-based magnetic biosensors Chapter 10: CMOS-based NMR sensors Chapter 11: Thermal sensors Chapter 12: CMOS-based actuators Chapter 13: Microfluidic packaging techniques Chapter 14: Life science protocols and applications Chapter 15: State-of-the-art and future works Appendix A: Deposition of gold on aluminum electrodes Appendix B: Test bench details for a two-electrode capacitive sensor Appendix C: Test bench details for an array of core-CBCM capacitive sensors Appendix D: Micro-hotplate

About the Author :
Ebrahim Ghafar-Zadeh received his B.Sc. and M.Sc. in Electrical Engineering from the KNT University of Technology (Tehran, Iran) and the University of Tehran (Tehran, Iran), respectively. He then continued his studies in the Polytechnique of Montreal (Montreal, Canada), where he received his Ph.D. degree in Electrical Engineering in 2008. His graduate studies focused on complementary metal-oxide semiconductor (CMOS)-based sensors for lab-on-chip applications. In recognition of his research achievements, he received several fellowship awards including a Postdoctoral Fellowship (PDF) from the Natural Sciences and Engineering Research Council of Canada (NSERC). Then he continued his PDF research studies in Electrical Engineering at McGill University (Montreal, Canada) and in Bioengineering, at the University of California, Berkeley. As Assistant Professor, in 2013, Ebrahim joined the Department of Electrical Engineering and Computer Science (EECS) in the Lassonde School of Engineering at York University where currently he is an Associate Professor, Member of Graduate Programs of the Departments of EECS and Biology, and Director of Biologically Inspired Sensors and Actuators (BioSA) research laboratory. His research is aimed at exploring novel integrated sensors and actuators for life science applications. He is a Senior Member of the IEEE and a licensed Professional Engineer in the province of Ontario. Saghi Forouhi is a postdoctoral researcher at York University (Department of Electrical Engineering and Computer Science (EECS), Biologically Inspired Sensors and Actuators (BioSA) Laboratory), Canada. She received her B.Sc. and M.Sc. degrees in electrical engineering from Guilan University, Iran, in 2010 and 2012, respectively. Then, she completed her Ph.D. at Isfahan University of Technology (IUT) in 2019 in an active collaboration between IUT and York University. Her research interests lie in the area of biologically inspired micro-systems, CMOS sensors, circuits, and systems. Tayebeh Azadmousavi earned both her B.Sc. and M.Sc. degrees in electronic engineering from Urmia University, located in Urmia, Iran, in 2011 and 2013 respectively. She later achieved her Ph.D. degree in electronic engineering from Sahand University of Technology in Sahand New Town, Tabriz, Iran, in 2019. During her academic journey, Dr. Azadmousavi's exceptional accomplishments stood out. She was notably recognized as a distinguished Ph.D. researcher by the Faculty of Electrical Engineering at Sahand University of Technology in 2019. Additionally, she secured the distinction of being the top Ph.D. graduate from Iran's National Elites Foundation in the same year. Currently serving as an Assistant Professor at the University of Bonab in Bonab, Iran. Dr. Azadmousavi has also taken on the role of a Research Visiting Professor at the Biologically Inspired Sensors and Actuators Laboratory (BioSA), situated within the esteemed Lassonde School of Engineering at York University in Toronto, ON, Canada. Her research pursuits encompass a diverse array of topics, including low voltage/low power analog and digital integrated circuits, analog integrated circuits operating in current mode and voltage mode, wireless RFIC design, as well as the innovative field of biosensors.


Best Sellers


Product Details
  • ISBN-13: 9781839536731
  • Publisher: Institution of Engineering and Technology
  • Publisher Imprint: Institution of Engineering and Technology
  • Height: 234 mm
  • Series Title: Materials, Circuits and Devices
  • ISBN-10: 183953673X
  • Publisher Date: 02 Jan 2024
  • Binding: Hardback
  • Language: English
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)
Institution of Engineering and Technology -
CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

CMOS-Based Sensors and Actuators for Life Science Applications: (Materials, Circuits and Devices)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!