Machine Learning for Algorithmic Trading
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python
Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python

Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python


     0     
5
4
3
2
1



International Edition


X
About the Book

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek s high-quality trades and quotes data Who this book is forIf you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Table of Contents:
Table of Contents Machine Learning for Trading Market and Fundamental Data Alternative Data for Finance Financial Feature Engineering Portfolio Optimization and Performance Evaluation The Machine Learning Process Linear Models The ML4T Workflow Time-Series Models for Volatility Forecasts and Statistical Arbitrage Bayesian ML Random Forests Boosting Your Trading Strategy Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning Text Data for Trading Topic Modeling Word Embeddings for Earnings Calls and SEC Filings Deep Learning for Trading CNNs for Financial Time Series and Satellite Images RNNs for Multivariate Time Series and Sentiment Analysis Autoencoders for Conditional Risk Factors and Asset Pricing Generative Adversarial Networks for Synthetic Time-Series Data Deep Reinforcement Learning Conclusions and Next Steps Appendix

About the Author :
Stefan is the founder and CEO of Applied AI. He advises Fortune 500 companies, investment firms, and startups across industries on data & AI strategy, building data science teams, and developing end-to-end machine learning solutions for a broad range of business problems. Before his current venture, he was a partner and managing director at an international investment firm, where he built the predictive analytics and investment research practice. He was also a senior executive at a global fintech company with operations in 15 markets, advised Central Banks in emerging markets, and consulted for the World Bank. He holds Master's degrees in Computer Science from Georgia Tech and in Economics from Harvard and Free University Berlin, and a CFA Charter. He has worked in six languages across Europe, Asia, and the Americas and taught data science at Datacamp and General Assembly.

Review :
"Algorithmic Trading is about timing the market using data and algorithms in order to improve your own trading performance, outcomes, and earnings. The wealth of techniques, algorithms, and models that are used for those purposes are presented comprehensively in this giant book and are also applicable to countless other predictive modeling applications and diverse use cases. That makes this an excellent machine learning book for all learners and users of predictive algorithms in data science and analytics." -- Dr Kirk Borne, Principal Data Scientist, Data Science Fellow, and Executive Advisor at Booz Allen Hamilton, and co-author of Ten Signs of Data Science Maturity "Stock markets are one of the most uncertain sectors, where decision making is often more an art than a science. Machine Learning is one of the best resources to analyze a large amount of data and make the most reasonable predictions. In his book, Stefan Jansen describes all cutting-edge methods, starting from the basic concepts concerning the dynamics of a stock market and going deeper and deeper into the application of robust algorithms to implement predictive analytics. With a clear, concise, and effective style, the author guides the reader on a journey to discover time-series analysis, regression methods, Bayesian algorithms, NLP, and GANs. All algorithms are provided with financial explanations and practical examples to help the reader start making rational and intelligent investments!" -- Giuseppe Bonaccorso, Global Head of Innovative Data Science at Bayer Pharmaceuticals, and author of Mastering Machine Learning Algorithms Second Edition "If you have done a finance module before, you will know that data and mathematics comes together very well in the world of trading. This idea is further reinforced in the book "The Man who Solved the Market" by Gregory Zuckerman. As the world of data grows in the 4 Vs dimension, namely Volume, Variety, Velocity, and Veracity, the circumstances present many opportunities for data to be used in algorithmic trading. Stefan covers the topic of algorithmic trading comprehensively, from selecting features and portfolio management to using text mining to spot trading opportunities. You will be able to find lots of possible use cases for Machine Learning in your trading! Together with the tools stated in the book which are open-source (no license fees!), your entry into the algorithmic trading world will be easier." -- Koo Ping Shung, Co-founder & Practicum Director at Data Science Rex, Co-founder of DataScience SG, and LinkedIn Top Voice 2020


Best Sellers


Product Details
  • ISBN-13: 9781839217715
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Edition: Revised edition
  • Language: English
  • No of Pages: 820
  • Returnable: N
  • Width: 191 mm
  • ISBN-10: 1839217715
  • Publisher Date: 31 Jul 2020
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 820
  • Returnable: N
  • Sub Title: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python
Packt Publishing Limited -
Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!