Training Systems Using Python Statistical Modeling - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data capture and analysis > Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python
Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python

Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Leverage the power of Python and statistical modeling techniques for building accurate predictive models

Key Features
  • Get introduced to Python's rich suite of libraries for statistical modeling
  • Implement regression, clustering and train neural networks from scratch
  • Includes real-world examples on training end-to-end machine learning systems in Python
Book Description

Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics.

You’ll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them.

By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.

What you will learn
  • Understand the importance of statistical modeling
  • Learn about the various Python packages for statistical analysis
  • Implement algorithms such as Naive Bayes, random forests, and more
  • Build predictive models from scratch using Python's scikit-learn library
  • Implement regression analysis and clustering
  • Learn how to train a neural network in Python
Who this book is for

If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.



Table of Contents:
Table of Contents
  1. Classical Statistical Analysis
  2. Introduction to Supervised Learning
  3. Binary Prediction Models
  4. Regression Analysis and How to Use It
  5. Neural Networks
  6. Clustering Techniques
  7. Dimensionality Reduction


About the Author :
Curtis Miller is a doctoral candidate at the University of Utah studying mathematical statistics. He writes software for both research and personal interest, including the R package (CPAT) available on the Comprehensive R Archive Network (CRAN). Among Curtis Miller's publications are academic papers along with books and video courses all published by Packt Publishing. Curtis Miller's video courses include Unpacking NumPy and Pandas, Data Acquisition and Manipulation with Python, Training Your Systems with Python Statistical Modelling, and Applications of Statistical Learning with Python. His books include Hands-On Data Analysis with NumPy and Pandas.


Best Sellers


Product Details
  • ISBN-13: 9781838820640
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Language: English
  • No of Pages: 290
  • ISBN-10: 1838820647
  • Publisher Date: 20 May 2019
  • Binding: Digital (delivered electronically)
  • No of Pages: 290
  • Sub Title: Explore popular techniques for modeling your data in Python


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python
Packt Publishing Limited -
Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Training Systems Using Python Statistical Modeling: Explore popular techniques for modeling your data in Python

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!