Practical Machine Learning with R
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications
Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications

Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications


     0     
5
4
3
2
1



International Edition


X
About the Book

Understand how machine learning works and get hands-on experience of using R to build algorithms that can solve various real-world problems Key Features Gain a comprehensive overview of different machine learning techniques Explore various methods for selecting a particular algorithm Implement a machine learning project from problem definition through to the final model Book DescriptionWith huge amounts of data being generated every moment, businesses need applications that apply complex mathematical calculations to data repeatedly and at speed. With machine learning techniques and R, you can easily develop these kinds of applications in an efficient way. Practical Machine Learning with R begins by helping you grasp the basics of machine learning methods, while also highlighting how and why they work. You will understand how to get these algorithms to work in practice, rather than focusing on mathematical derivations. As you progress from one chapter to another, you will gain hands-on experience of building a machine learning solution in R. Next, using R packages such as rpart, random forest, and multiple imputation by chained equations (MICE), you will learn to implement algorithms including neural net classifier, decision trees, and linear and non-linear regression. As you progress through the book, you’ll delve into various machine learning techniques for both supervised and unsupervised learning approaches. In addition to this, you’ll gain insights into partitioning the datasets and mechanisms to evaluate the results from each model and be able to compare them. By the end of this book, you will have gained expertise in solving your business problems, starting by forming a good problem statement, selecting the most appropriate model to solve your problem, and then ensuring that you do not overtrain it. What you will learn Define a problem that can be solved by training a machine learning model Obtain, verify and clean data before transforming it into the correct format for use Perform exploratory analysis and extract features from data Build models for neural net, linear and non-linear regression, classification, and clustering Evaluate the performance of a model with the right metrics Implement a classification problem using the neural net package Employ a decision tree using the random forest library Who this book is forIf you are a data analyst, data scientist, or a business analyst who wants to understand the process of machine learning and apply it to a real dataset using R, this book is just what you need. Data scientists who use Python and want to implement their machine learning solutions using R will also find this book very useful. The book will also enable novice programmers to start their journey in data science. Basic knowledge of any programming language is all you need to get started.

Table of Contents:
Table of Contents An Introduction to Machine Learning Data Cleaning and Pre-Processing Feature Engineering Introduction to neuralnet and Evaluation Methods Linear and Logistic Regression Models Unsupervised Learning

About the Author :
Brindha Priyadarshini Jeyaraman is a senior data scientist at AIDA Technologies. She has completed her M.Tech in knowledge engineering with a gold medal from the National University of Singapore. She has more than 10 years of work experience and she is an expert in understanding business problems, and designing and implementing solutions using machine learning. She has worked on several real data science projects in the insurance and finance domain. This book provides a great platform for her to share the knowledge she has gained over the past few years of working in data science and machine learning. Ludvig Renbo Olsen, BSc in Cognitive Science from Aarhus University, is the author of multiple R packages, such as groupdata2 and cvms. With 4 years of R and Python experience, including working as a machine learning researcher at the Danish startup UNSILO, he is passionate about creating tools and tutorials for students and scientists. Guided by Effective Altruism, he intends to positively impact the world through his career. Monicah Wambugu is the lead data scientist at a financial technology company that offers micro-loans by leveraging on data, machine learning, and analytics to perform alternative credit scoring. She is a graduate student at the School of Information at UC Berkeley Masters in Information Management and Systems. Monicah is particularly interested in how data science and machine learning can be used to design products and applications that respond to the behavioral and socioeconomic needs of target audiences.


Best Sellers


Product Details
  • ISBN-13: 9781838550134
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Height: 93 mm
  • No of Pages: 416
  • Returnable: N
  • Returnable: N
  • Width: 75 mm
  • ISBN-10: 1838550135
  • Publisher Date: 30 Aug 2019
  • Binding: Paperback
  • Language: English
  • No of Pages: 416
  • Returnable: N
  • Sub Title: Define, build, and evaluate machine learning models for real-world applications


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications
Packt Publishing Limited -
Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Practical Machine Learning with R: Define, build, and evaluate machine learning models for real-world applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!