Machine Learning and Hybrid Modelling for Reaction Engineering
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Chemistry > Physical chemistry > Computational chemistry > Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)
Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)

Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Over the last decade, there has been a significant shift from traditional mechanistic and empirical modelling into statistical and data-driven modelling for applications in reaction engineering. In particular, the integration of machine learning and first-principle models has demonstrated significant potential and success in the discovery of (bio)chemical kinetics, prediction and optimisation of complex reactions, and scale-up of industrial reactors. Summarising the latest research and illustrating the current frontiers in applications of hybrid modelling for chemical and biochemical reaction engineering, Machine Learning and Hybrid Modelling for Reaction Engineering fills a gap in the methodology development of hybrid models. With a systematic explanation of the fundamental theory of hybrid model construction, time-varying parameter estimation, model structure identification and uncertainty analysis, this book is a great resource for both chemical engineers looking to use the latest computational techniques in their research and computational chemists interested in new applications for their work.

Table of Contents:
Physical Model Construction;Data-driven Model Construction;Hybrid Model Construction;Model Structure Identification;Model Uncertainty Analysis;Interpretable Machine Learning for Kinetic Rate Model Discovery;Graph Neural Networks for the Prediction of Molecular Structure–Property Relationships;Reaction Network Simulation and Model Reduction;Hybrid Modelling Under Uncertainty: Effects of Model Greyness, Data Quality and Data Quantity;A Data-efficient Transfer Learning Approach for New Reaction System Predictive Modelling;Constructing Time-varying and History-dependent Kinetic Models via Reinforcement Learning;Surrogate and Multiscale Modelling for (Bio)reactor Scale-up and Visualisation;Statistical Design of Experiments for Reaction Modelling and Optimisation;Autonomous Synthesis and Self-optimizing Reactors;Industrial Data Science for Batch Reactor Monitoring and Fault Detection

About the Author :
Dr. Dongda Zhang is a Lecturer at Department of Chemical Engineering, the University of Manchester. His research focuses on the application of hybrid modelling and data intelligence in complex reaction systems. These include chemical and biochemical process modelling, optimisation, control, and data analytics. He completed his PhD research at the University of Cambridge within two years and graduated after the university special approval on Thesis Early Submission (2016). He is an Honorary Research Fellow at Imperial College London, a member of the UK Biotechnology and Biological Sciences Research Council Pool of Experts, a member of Editorial Board for ‘Biochemical Engineering Journal’, an Associate Editor of ‘Digital Chemical Engineering’, and a member of the Industrial Management Board for the Centre for Process Analytics and Control Technology. Dr Ehecatl Antonio Del Rio Chanona is a Lecturer at the Department of Chemical Engineering and the Sargent Centre for Process Systems Engineering, Imperial College London. His research interests include the application of optimisation and machine learning techniques to chemical engineering systems. He has been in receipt of numerous awards including the fellowship from the UK Engineering and Physical Sciences Research Council (2017), the Danckwerts-Pergamon Prize at the University of Cambridge (2017), the Sir William Wakeham award at Imperial College London (2019), and the Nicklin Medal by the Institution of Chemical Engineers in recognition for exceptional research that will have significant impact in areas of process systems engineering and adoption of intelligent and autonomous learning algorithms to chemical engineering (2020).


Best Sellers


Product Details
  • ISBN-13: 9781837670185
  • Publisher: Royal Society of Chemistry
  • Publisher Imprint: Royal Society of Chemistry
  • Language: English
  • Sub Title: Theory and Applications
  • ISBN-10: 1837670188
  • Publisher Date: 20 Dec 2023
  • Binding: Digital download
  • Series Title: Volume 26 Theoretical and Computational Chemistry Series


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)
Royal Society of Chemistry -
Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications(Volume 26 Theoretical and Computational Chemistry Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!