LLM Design Patterns
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems
LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems

LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems


     0     
5
4
3
2
1



International Edition


X
About the Book

Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques Key Features Learn comprehensive LLM development, including data prep, training pipelines, and optimization Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents Implement evaluation metrics, interpretability, and bias detection for fair, reliable models Print or Kindle purchase includes a free PDF eBook Book DescriptionThis practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment. You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems. By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values. What you will learn Implement efficient data prep techniques, including cleaning and augmentation Design scalable training pipelines with tuning, regularization, and checkpointing Optimize LLMs via pruning, quantization, and fine-tuning Evaluate models with metrics, cross-validation, and interpretability Understand fairness and detect bias in outputs Develop RLHF strategies to build secure, agentic AI systems Who this book is forThis book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.

Table of Contents:
Table of Contents Introduction to LLM Design Patterns Data Cleaning for LLM Training Data Augmentation Handling Large Datasets for LLM Training Data Versioning Dataset Annotation and Labeling Training Pipeline Hyperparameter Tuning Regularization Checkpointing and Recovery Fine-Tuning Model Pruning Quantization Evaluation Metrics Cross-Validation Interpretability Fairness and Bias Detection Adversarial Robustness Reinforcement Learning from Human Feedback Chain-of-Thought Prompting Tree-of-Thoughts Prompting Reasoning and Acting Reasoning WithOut Observation Reflection Techniques Automatic Multi-Step Reasoning and Tool Use Retrieval-Augmented Generation Graph-Based RAG Advanced RAG Evaluating RAG Systems Agentic Patterns

About the Author :
Ken Huang is a renowned AI expert, serving as co-chair of AI Safety Working Groups at Cloud Security Alliance and the AI STR Working Group at World Digital Technology Academy under the UN Framework. As CEO of DistributedApps, he provides specialized GenAI consulting. A key contributor to OWASP's Top 10 Risks for LLM Applications and NIST's Generative AI Working Group, Huang has authored influential books including Beyond AI (Springer, 2023), Generative AI Security (Springer, 2024), and Agentic AI: Theories and Practice (Springer, 2025) He's a global speaker at prestigious events such as Davos WEF, ACM, IEEE, and RSAC. Huang is also a member of the OpenAI Forum and project leader for the OWASP AI Vulnerability Scoring System project.


Best Sellers


Product Details
  • ISBN-13: 9781836207030
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Height: 235 mm
  • No of Pages: 534
  • Returnable: N
  • Sub Title: A Practical Guide to Building Robust and Efficient AI Systems
  • ISBN-10: 1836207034
  • Publisher Date: 30 May 2025
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems
Packt Publishing Limited -
LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

LLM Design Patterns: A Practical Guide to Building Robust and Efficient AI Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!