Data Science with Matlab. Multivariate Data Analysis Techniques
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Data Science with Matlab. Multivariate Data Analysis Techniques
Data Science with Matlab. Multivariate Data Analysis Techniques

Data Science with Matlab. Multivariate Data Analysis Techniques


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Multivariate statistical techniques include supervised and unsupervised learning techniques. This book develops supervised analysis techniques such as decision trees and discriminant analysis models. It also develops non-supervised analysis techniques such as cluster analysis, dimension reduction and multidimensional scaling.Multidimensional scaling (MDS) is a set of methods that address all these problems. MDS allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of your data in a small number of dimensions. MDS does not require raw data, but only a matrix of pairwise distances or dissimilarities.Feature selection reduces the dimensionality of data by selecting only a subset of measured features (predictor variables) to create a model. Selection criteria usually involve the minimization of a specific measure of predictive error for models fit to different subsets. Algorithms search for a subset of predictors that optimally model measured responses, subject to constraints such as required or excluded features and the size of the subset.Factor analysis is a way to fit a model to multivariate data to estimate just this sort of interdependence. In a factor analysis model, the measured variables depend on a smaller number of unobserved (latent) factors. Because each factor might affect several variables in common, they are known as common factors. Each variable is assumed to be dependent on a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as specific variance because it is specific to one variable.Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups, or clusters, of data. Clusters are formed in such a way that objects in the same cluster are very similar and objects in different clusters are very distinct. Measures of similarity depend on the application.Decision trees, or classification trees and regression trees, predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node downto a leaf node. The leaf node contains the response. Classification trees give responses that are nominal, such as 'true' or 'false'. Regression trees give numeric responses. Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable).Discriminant analysis is a classification method. It assumes that differen classes generate data based on different Gaussian distributions. Linear discriminant analysis is also known as the Fisher discriminant, named for its inventor.


Best Sellers


Product Details
  • ISBN-13: 9781796848144
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 229 mm
  • No of Pages: 306
  • Spine Width: 18 mm
  • Width: 152 mm
  • ISBN-10: 179684814X
  • Publisher Date: 13 Feb 2019
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 449 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data Science with Matlab. Multivariate Data Analysis Techniques
Independently Published -
Data Science with Matlab. Multivariate Data Analysis Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Science with Matlab. Multivariate Data Analysis Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!