Python Machine Learning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2


     0     
5
4
3
2
1



International Edition


X
About the Book

Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book DescriptionPython Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is forIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.

Table of Contents:
Table of Contents Giving Computers the Ability to Learn from Data Training Simple Machine Learning Algorithms for Classification A Tour of Machine Learning Classifiers Using scikit-learn Building Good Training Datasets – Data Preprocessing Compressing Data via Dimensionality Reduction Learning Best Practices for Model Evaluation and Hyperparameter Tuning Combining Different Models for Ensemble Learning Applying Machine Learning to Sentiment Analysis Embedding a Machine Learning Model into a Web Application Predicting Continuous Target Variables with Regression Analysis Working with Unlabeled Data – Clustering Analysis Implementing a Multilayer Artificial Neural Network from Scratch Parallelizing Neural Network Training with TensorFlow (N.B. Please use the Look Inside option to see further chapters)

About the Author :
Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. As Lead AI Educator at Grid AI, Sebastian plans to continue following his passion for helping people get into machine learning and artificial intelligence. Vahid Mirjalili is a deep learning researcher focusing on CV applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University.

Review :
"Python Machine Learning 3rd edition is a very useful book for machine learning beginners all the way to fairly advanced readers, thoroughly covering the theory and practice of ML, with example datasets, Python code, and good pointers to the vast ML literature about advanced issues." -- Alex Martelli, Python Software Foundation Fellow, Co-author of Python Cookbook and Python in a Nutshell "A brilliantly approachable introduction to machine learning with Python. Raschka and Mirjalili break difficult concepts down into language the layperson can easily understand while placing these examples within real-world contexts. A worthy addition to your machine learning library!" -- Dr Kirk Borne, Principal Data Scientist, Data Science Fellow, and Executive Advisor at Booz Allen Hamilton, and co-author of Ten Signs of Data Science Maturity "Python Machine Learning, Third Edition is a highly practical, hands-on book that covers the field of machine learning, from theory to practice. I strongly recommend it to any practitioner who wishes to become an expert in machine learning. Excellent book!" -- Sebastian Thrun, CEO of Kitty Hawk Corporation, and chairman and co-founder of Udacity "I've been teaching "Big Data Machine Learning AI" at Johns Hopkins Carey Business School for the past several years and have employed Sebastian Raschka and Vahid Mirjalili's book ever since. I give their newest edition the highest marks for making Machine Learning digestible for the lay person. Their book is a must-have when teaching new recruits the amazing art of AI - I give their book my most enthusiastic endorsement!" -- Jim Kyung-Soo Liew, Ph.D., Associate Professor in Finance and AI at Johns Hopkins Carey Business School


Best Sellers


Product Details
  • ISBN-13: 9781789955750
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Returnable: N
  • Width: 75 mm
  • ISBN-10: 1789955750
  • Publisher Date: 12 Dec 2019
  • Binding: Paperback
  • Height: 93 mm
  • No of Pages: 772
  • Returnable: N
  • Sub Title: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2
Packt Publishing Limited -
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!