Python: Advanced Guide to Artificial Intelligence
Home > Computing and Information Technology > Computer science > Artificial intelligence > Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python
Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python

Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book DescriptionThis Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is forThis Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

Table of Contents:
Table of Contents Machine Learning Model Fundamentals Introduction to Semi-Supervised Learning Graph-Based Semi-Supervised Learning Bayesian Networks and Hidden Markov Models EM Algorithm and Applications Hebbian Learning and Self-Organizing Maps Clustering Algorithms Advanced Neural Models Classical Machine Learning with TensorFlow Neural Networks and MLP with TensorFlow and Keras RNN with TensorFlow and Keras CNN with TensorFlow and Keras Autoencoder with TensorFlow and Keras TensorFlow Models in Production with TF Serving Deep Reinforcement Learning Generative Adversarial Networks Distributed Models with TensorFlow Clusters Debugging TensorFlow Models Tensor Processing Units Getting Started Image Classification Image Retrieval Object Detection Semantic Segmentation Similarity Learning

About the Author :
Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning solution design, management, and delivery. He got his MScEng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and NLP. Armando Fandango is an accomplished technologist with hands-on capabilities and senior executive level experience with startups and large companies globally. Armando is spearheading Epic Engineering and Consulting Group as Chief Data Scientist. His work spans across diverse industries including FinTech, Banking, BioInformatics, Genomics, AdTech, Utilities and Infrastructure, Traffic and Transportation, Energy, Human Resource, and Entertainment. Armando has worked for more than ten years in projects involving Predictive Analytics, Data Science, Machine Learning, Big Data, Product Engineering and High-Performance Computing. His research interests span across machine learning, deep learning, algorithmic game theory and scientific computing. Armando has authored book titled “Python Data Analysis - Second Edition” and published research in international journals and conferences. Rajalingappaa Shanmugamani is currently working as a Engineering Manager for a Deep learning team at Kairos. Previously, he worked as a Senior Machine Learning Developer at SAP, Singapore and worked at various startups in developing machine learning products. He has a Masters from Indian Institute of Technology – Madras. He has published articles in peer-reviewed journals and conferences and applied for few patents in the area of machine learning. In his spare time, he coaches programming and machine learning to school students and engineers.


Best Sellers


Product Details
  • ISBN-13: 9781789951721
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Language: English
  • No of Pages: 764
  • ISBN-10: 1789951720
  • Publisher Date: 21 Dec 2018
  • Binding: Digital (delivered electronically)
  • No of Pages: 764
  • Sub Title: Expert machine learning systems and intelligent agents using Python


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python
Packt Publishing Limited -
Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python: Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!