Go Machine Learning Projects
Home > Computing and Information Technology > Computer science > Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go
Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go

Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go


     0     
5
4
3
2
1



International Edition


X
About the Book

Work through exciting projects to explore the capabilities of Go and Machine Learning Key Features Explore ML tasks and Go’s machine learning ecosystem Implement clustering, regression, classification, and neural networks with Go Get to grips with libraries such as Gorgonia, Gonum, and GoCv for training models in Go Book DescriptionGo is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but also to have its performance measured. The book begins by guiding you through setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis along with decomposition and clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks. Lastly, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project. By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go toolkit, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects. What you will learn Set up a machine learning environment with Go libraries Use Gonum to perform regression and classification Explore time series models and decompose trends with Go libraries Clean up your Twitter timeline by clustering tweets Learn to use external services for your machine learning needs Recognize handwriting using neural networks and CNN with Gorgonia Implement facial recognition using GoCV and OpenCV Who this book is forIf you’re a machine learning engineer, data science professional, or Go programmer who wants to implement machine learning in your real-world projects and make smarter applications easily, this book is for you. Some coding experience in Golang and knowledge of basic machine learning concepts will help you in understanding the concepts covered in this book.

Table of Contents:
Table of Contents How to Solve All Machine Learning Problems Linear Regression - House Price Prediction Classification - Spam Email Detection Decomposing CO2 Trends Using Time Series Analysis Clean Up Your Personal Twitter Timeline by Clustering Tweets Neural Networks - MNIST Handwriting Recognition Convolutional Neural Networks - MNIST Handwriting Recognition Basic Facial Detection Hot Dog or Not Hot Dog - Using External Services What's Next?

About the Author :
Xuanyi Chew is the Chief Data Scientist of a Sydney-based logistics startup. He is the primary author of Gorgonia, an open source deep learning package for Go. He's been practicing machine learning for the past 12 years, applying them typically to help startups. His goal in life is to make an artificial general intelligence a reality. He enjoys learning new things.


Best Sellers


Product Details
  • ISBN-13: 9781788993401
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Height: 93 mm
  • No of Pages: 348
  • Returnable: N
  • Returnable: N
  • Width: 75 mm
  • ISBN-10: 1788993403
  • Publisher Date: 30 Nov 2018
  • Binding: Paperback
  • Language: English
  • No of Pages: 348
  • Returnable: N
  • Sub Title: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go
Packt Publishing Limited -
Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Go Machine Learning Projects: Eight projects demonstrating end-to-end machine learning and predictive analytics applications in Go

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!