Buy Practical Data Science Cookbook - by Prabhanjan Tattar
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data capture and analysis > Practical Data Science Cookbook -
Practical Data Science Cookbook -

Practical Data Science Cookbook -


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Over 85 recipes to help you complete real-world data science projects in R and Python About This Book • Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data • Get beyond the theory and implement real-world projects in data science using R and Python • Easy-to-follow recipes will help you understand and implement the numerical computing concepts Who This Book Is For If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python. What You Will Learn • Learn and understand the installation procedure and environment required for R and Python on various platforms • Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python • Build a predictive model and an exploratory model • Analyze the results of your model and create reports on the acquired data • Build various tree-based methods and Build random forest In Detail As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don't. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python. Style and approach This step-by-step guide to data science is full of hands-on examples of real-world data science tasks. Each recipe focuses on a particular task involved in the data science pipeline, ranging from readying the dataset to analytics and visualization

About the Author :
Prabhanjan Tattar has 9 years of experience as a statistical analyst. His main thurst has been to explain statistical and machine learning techniques through elegant programming which will clear the nuances of the underlying mathematics. Survival analysis and statistical inference are his main areas of research/interest, and he has published several research papers in peer-reviewed journals and also has authored two books on R: R Statistical Application Development by Example, Packt Publishing, and A Course in Statistics with R, Wiley. He also maintains the R packages gpk, RSADBE, and ACSWR. Tony Ojeda is an accomplished data scientist and entrepreneur, with expertise in business process optimization and over a decade of experience creating and implementing innovative data products and solutions. He has a master's degree in finance from Florida International University and an MBA with a focus on strategy and entrepreneurship from DePaul University. He is the founder of District Data Labs, is a cofounder of Data Community DC, and is actively involved in promoting data science education through both organizations. Sean Patrick Murphy spent 15 years as a senior scientist at The Johns Hopkins University, Applied Physics Laboratory, where he focused on machine learning, modeling and simulation, signal processing, and high performance computing in the Cloud. Now, he acts as an advisor and data consultant for companies in San Francisco, New York, and Washington DC. He completed graduation from The Johns Hopkins University and got his MBA from the University of Oxford. He currently co-organizes the Data Innovation DC meetup and co-founded the Data Science MD meetup. He is also a board member and cofounder of Data Community DC. Benjamin Bengfort is an experienced data scientist and Python developer who has worked in the military, industry, and academia for the past 8 years. He is currently pursuing his PhD in Computer Science at the University of Maryland, College Park, doing research in Metacognition and Natural Language Processing. He holds a Master's degree in Computer Science from North Dakota State University, where he taught undergraduate Computer Science courses. He is also an adjunct faculty member at Georgetown University, where he teaches Data Science and Analytics. Benjamin has been involved in two data science startups in the DC region: leveraging large-scale machine learning and Big Data techniques across a variety of applications. He has a deep appreciation for the combination of models and data for entrepreneurial effect, and he is currently building one of these start-ups into a more mature organization. Abhijit Dasgupta is a data consultant working in the greater DC-Maryland-Virginia area, with several years of experience in biomedical consulting, business analytics, bioinformatics, and bioengineering consulting. He has a PhD in biostatistics from the University of Washington and over 40 collaborative peer-reviewed manuscripts, with strong interests in bridging the statistics/machine-learning divide. He is always on the lookout for interesting and challenging projects, and is an enthusiastic speaker and discussant on new and better ways to look at and analyze data. He is a member of Data Community DC and a founding member and co-organizer of Statistical Programming DC (formerly R Users DC)


Best Sellers


Product Details
  • ISBN-13: 9781787123267
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Edition: Revised edition
  • No of Pages: 434
  • ISBN-10: 178712326X
  • Publisher Date: 29 Jun 2017
  • Binding: Digital (delivered electronically)
  • Language: English


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Practical Data Science Cookbook -
Packt Publishing Limited -
Practical Data Science Cookbook -
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Practical Data Science Cookbook -

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!