Machine Learning with TensorFlow 1.x
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning with TensorFlow 1.x
Machine Learning with TensorFlow 1.x

Machine Learning with TensorFlow 1.x


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Tackle common commercial machine learning problems with Google's TensorFlow 1.x library and build deployable solutions. About This Book • Enter the new era of second-generation machine learning with Python with this practical and insightful guide • Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support • Create pipelines for training and using applying classifiers using raw real-world data Who This Book Is For This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow's unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected. What You Will Learn • Explore how to use different machine learning models to ask different questions of your data • Learn how to build deep neural networks using TensorFlow 1.x • Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x • Find out how to write clean and elegant Python code that will optimize the strength of your algorithms • Discover how to embed your machine learning model in a web application for increased accessibility • Learn how to use multiple GPUs for faster training using AWS In Detail Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x. Firstly, you'll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You'll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you'll implement a complete real-life production system from training to serving a deep learning model. As you advance you'll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you'll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim. By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment. Style and approach This comprehensive guide will enable you to understand the latest advances in machine learning and will empower you to implement this knowledge in your machine learning environment.

About the Author :
Quan Hua is a Computer Vision and Machine Learning Engineer at BodiData, a data platform for body measurements, where he focuses on developing computer vision and machine learning applications for a handheld technology capable of acquiring a body avatar while a person is fully clothed. He earned a bachelor of science degree from the University of Science, Vietnam, specializing in Computer Vision. He has been working in the field of computer vision and machine learning for about 3 years at start-ups. Quan has been writing for Packt since 2015 for a Computer Vision book, OpenCV 3 Blueprints. Shams Ul Azeem is an undergraduate in electrical engineering from NUST Islamabad, Pakistan. He has a great interest in the computer science field, and he started his journey with Android development. Now, he's pursuing his career in Machine Learning, particularly in deep learning, by doing medical-related freelancing projects with different companies. He was also a member of the RISE lab, NUST, and he has a publication credit at the IEEE International Conference, ROBIO as a co-author of Designing of motions for humanoid goalkeeper robots. Saif Ahmed is an accomplished quantitative analyst and data scientist with 15 years of industry experience. His career started in management consulting at Accenture and lead him to quantitative and senior management roles at Goldman Sachs and AIG Investments. Most recently, he co-founded and runs a start-up focused on applying Deep Learning to automating medical imaging. He obtained his bachelor's degree in computer science from Cornell University and is currently pursuing a graduate degree in data science at U.C. Berkeley.


Best Sellers


Product Details
  • ISBN-13: 9781786461988
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Language: English
  • ISBN-10: 1786461986
  • Publisher Date: 21 Nov 2017
  • Binding: Digital (delivered electronically)
  • No of Pages: 304


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning with TensorFlow 1.x
Packt Publishing Limited -
Machine Learning with TensorFlow 1.x
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning with TensorFlow 1.x

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!