Contact in Structural Mechanics by Anh Le Van - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Mechanical engineering > Contact in Structural Mechanics: A Weighted Residual Approach
Contact in Structural Mechanics: A Weighted Residual Approach

Contact in Structural Mechanics: A Weighted Residual Approach


     0     
5
4
3
2
1



International Edition


X
About the Book

Contact in Structural Mechanics treats the problem of contact in the context of large deformations and the Coulomb friction law. The proposed formulation is based on a weak form that generalizes the classical principle of virtual powers in the sense that the weak form also encompasses all the contact laws. This formulation is thus a weighted residue method and has the advantage of being amenable to a standard finite element discretization. This book provides the reader with a detailed description of contact kinematics and the variation calculus of kinematic quantities, two essential subjects for any contact study. The numerical resolution is carried out in statics and dynamics. In both cases, the derivation of the contact tangent matrix – an essential ingredient for iterative calculation – is explained in detail. Several numerical examples are presented to illustrate the efficiency of the method.

Table of Contents:
Preface ix 1 Introduction to Contact Problems in Structural Mechanics 1 1.1 Solving a contact problem numerically via the penalty method 3 1.2 Numerical solution of a contact problem using the multiplier method 8 1.2.1 Preliminaries: problems with equality constraints 8 1.2.2 Problems with inequality constraints 10 1.3 Numerical solution of a contact problem by the augmented Lagrangian method 15 1.4 Book synopsis 21 2 Contact Kinematics 23 2.1 Motions and strains 23 2.2 Potential contact surfaces 25 2.3 Normal contact kinematics 26 2.4 Variation of kinematic quantities with respect to time 29 2.5 Tangential contact kinematics – Relative velocity 34 3 Sthenics of Contact 37 3.1 Stresses in bodies 37 3.2 Contact stress vector 38 4 The Constitutive Law 39 4.1 Hyperelastic materials 39 4.2 Elastoplastic materials with isotropic hardening 41 5 Contact Laws 45 5.1 Normal contact law 45 5.2 Tangential contact law 47 6 Strong Formulation of the Contact Problem 51 6.1 Field equations 51 6.2 Boundary conditions 52 6.3 Initial conditions 53 6.4 Remarks 53 7 Weak Formulation of the Contact Problem 55 7.1 Transforming the contact laws into equalities 55 7.2 Preliminary ideas for the weak form 59 7.3 Weak form of the contact problem 60 7.4 Equivalence between the strong and the weak forms 62 7.5 Final remarks 66 8 Matrix Equations of the Contact Problem 69 8.1 Introduction 69 8.2 Meshes 70 8.3 Matrix notation in finite elements 72 8.4 The element nodal vectors 73 8.5 Interpolation of positions, displacements and virtual velocities 75 8.5.1 Interpolation on the contactor surface 75 8.5.2 Interpolation on the target surface 75 8.6 Interpolation of multipliers 76 8.6.1 Definition of the vector λ 76 8.6.2 Interpolation of λ 78 8.6.3 Interpolation of λ∗ 78 8.7 Discretization of the element virtual contact power (P∗contact)e(1) 78 8.7.1 Explicit expressions for {Φe(1)contact}, {Φe(2)contact} and {Re(1)Λ } in the three cases: algorithmic gap, algorithmic slip and algorithmic stick 85 8.8 System of matrix equations for the contact problem 88 8.8.1 Global nodal vectors 88 8.8.2 Discretization of the classical terms 90 8.8.3 Assembly of element virtual contact powers 91 8.8.4 System of matrix equations 94 8.9 Abnormal contact stresses 96 8.9.1 First cause of abnormal contact stresses 96 8.9.2 Second cause of abnormal contact stresses 98 8.9.3 Third cause of abnormal contact stresses 98 8.10 Projection calculation: contact detection 99 8.11 Discrete expression of the slip VTΔt 101 8.12 Physical units 106 8.13 Chapter summary 107 9 Solution of the Quasi-static Contact Problem 109 9.1 System of equations for the static contact problem 109 9.2 Incremental loop initialization: the vectors U0, Λ0 111 9.3 Calculation of step n ≥ 1: calculating Un , Λn 111 9.3.1 Principle of the iterative Newton–Raphson scheme 111 9.3.2 Tangent matrix 113 9.3.3 Block matrix inversion 114 9.3.4 Iterative loop initialization: the vectors U0n and Λ0n 115 9.4 Solution algorithm 115 9.5 Calculation method for the tangent matrix 117 9.5.1 Direct method 117 9.5.2 Indirect method 118 9.5.3 Restriction to the contact tangent matrix 121 9.6 Calculation of the contact tangent matrix 123 9.6.1 Variations of the arguments of the functional P∗contact 123 9.6.2 Calculation of the variation δP∗contact 126 9.6.3 Calculation of the variation (δP∗contact)e(1) 127 9.6.4 Discretization of the variation (δP∗contact)e(1) – Element contact tangent matrix [Kecontact] 133 9.6.5 Discretization of the variation δP∗contact – Contact tangent matrix [Kcontact] 135 9.6.6 Explicit expression for the element contact tangent matrix [Kecontact] 138 9.6.7 [Kecontact] in the case of the algorithmic gap at the considered integration point 144 9.6.8 [Kecontact] in the case of algorithmic contact with slip at the considered integration point 144 9.6.9 [Kecontact] in the case of algorithmic contact with stick at the considered integration point 146 9.6.10 Symmetry of the contact tangent matrix [Kcontact] 147 9.7 Particular case of two non-contacting bodies 148 9.8 Particular case of the frictionless problem 149 9.8.1 Algorithmic gap case at the considered integration point 150 9.8.2 Algorithmic contact with slip case at the considered integration point 152 9.9 Solution via the arc-length method 152 9.10 Physical units 154 9.11 Summary of the chapter 155 10 Numerical Examples of Quasi-static Contact 157 10.1 Contact patch test 157 10.2 Hertzian contact problem 159 10.2.1 Frictionless contact case 160 10.2.2 Case of frictional contact with μ = 0.3 163 10.3 Rolling disk 167 10.4 Contact between two beams 171 10.4.1 Dead load 171 10.4.2 Follower load 176 10.5 Contact of two pressurized membranes 176 10.5.1 Centered membranes 180 10.5.2 Membranes Staggered Along X 182 10.6 Extrusion of an elastoplastic cylinder 184 10.7 Interference fit problem 189 10.7.1 Abnormal contact stresses 192 10.7.2 Influence of the mesh 194 10.8 Conclusion 194 11 Solution of the Dynamic Contact Problem 197 11.1 A brief review of the computational methods in dynamic contact 197 11.2 Solution of the dynamic contact problem via Newmark’s algorithm 200 11.2.1 Initializing the incremental loop: the vectors U0 , V0 , A0 and Λ0 202 11.2.2 Calculation for a step n ≥ 1: calculating Un , Vn , An , Λn 202 11.2.3 Initializing the iterative loop: the vectors U0n, V0n, A0n, Λ0n 207 11.3 Solution algorithm 208 11.4 Summary 210 12 Numerical Examples of Dynamic Contact 213 12.1 Impact of two elastic rods 213 12.1.1 Analytical solution 214 12.1.2 Numerical applications 217 12.1.3 Numerical solution 218 12.2 Disk impacting a rigid plane 220 12.2.1 Frictionless case 222 12.2.2 Case with friction μ = 0.3 224 12.3 Disk falling into a funnel 228 12.3.1 Frictionless case 231 12.3.2 Case with friction μ = 0.4 234 12.4 Final remarks 236 Appendix A: Variations of Kinematic Quantities 239 References 247 Index 257

About the Author :
Anh Le van is Professor of Structural Mechanics in the Faculty of Science and Technology, University of Nantes, France. His research at the Research Institute in Civil and Mechanical Engineering (GeM) focuses on membrane structures and, more specifically, on contact and bifurcation problems in these structures.


Best Sellers


Product Details
  • ISBN-13: 9781786309068
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Language: English
  • Returnable: N
  • Returnable: N
  • Weight: 625 gr
  • ISBN-10: 1786309068
  • Publisher Date: 14 Jun 2024
  • Binding: Hardback
  • No of Pages: 288
  • Returnable: N
  • Sub Title: A Weighted Residual Approach


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Contact in Structural Mechanics: A Weighted Residual Approach
ISTE Ltd and John Wiley & Sons Inc -
Contact in Structural Mechanics: A Weighted Residual Approach
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Contact in Structural Mechanics: A Weighted Residual Approach

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!