Fundamentals of Robust Machine Learning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Fundamentals of Robust Machine Learning
Fundamentals of Robust Machine Learning

Fundamentals of Robust Machine Learning


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The reliability and stability of machine learning systems are crucial in real-world applications, where data variability, noise, and uncertainty can significantly affect model performance. Building models that remain effective under such challenges defines the essence of robust AI. Fundamentals of Robust Machine Learning explores the theoretical and practical approaches to designing resilient learning algorithms. The book discusses adversarial robustness, data augmentation, uncertainty quantification, and generalization techniques. It also covers robust optimization and fairness in model evaluation. Combining mathematical rigor with applied examples, it provides students, researchers, and engineers with tools to build dependable machine learning systems capable of handling complex, imperfect, and evolving data environments.

About the Author :
Bechoo Lal, PhD. became a Member (M) of IAENG: International Association of Engineers, USA with membership (108820) in 2010, a Senior Member (SM) in 2019. I am doctorate PhD in Computer Science, PhD- Information System from University of Mumbai, M.Tech-CSE, Master of Computer Application (MCA) - Banaras Hindu University (BHU), India, and PGP- Data Science from Purdue University, USA. Currently I am working as an Associate Professor in Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation (KLEF) - KL University Vijayawada Campus Andhra Pradesh, India. In addition to this I am supervising PhD research scholars from SJJT University, Rajasthan, India. My research areas are data science, big data analytics and Machine Learning.


Best Sellers


Product Details
  • ISBN-13: 9781779568878
  • Publisher: Toronto Academic Press
  • Publisher Imprint: Toronto Academic Press
  • ISBN-10: 1779568878
  • Publisher Date: 15 Jan 2026


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Fundamentals of Robust Machine Learning
Toronto Academic Press -
Fundamentals of Robust Machine Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Fundamentals of Robust Machine Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!