Programming With Python
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Programming and scripting languages: general > Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow

Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Programming With Python - 4 BOOK BUNDLE!!Deep Learning with KerasHere Is a Preview of What You'll Learn Here... The difference between deep learning and machine learning Deep neural networks Convolutional neural networks Building deep learning models with Keras Multi-layer perceptron network models Activation functions Handwritten recognition using MNIST Solving multi-class classification problems Recurrent neural networks and sequence classification And much more... Convolutional Neural Networks in PythonHere Is a Preview of What You'll Learn In This Book... Convolutional neural networks structure How convolutional neural networks actually work Convolutional neural networks applications The importance of convolution operator Different convolutional neural networks layers and their importance Arrangement of spatial parameters How and when to use stride and zero-padding Method of parameter sharing Matrix multiplication and its importance Pooling and dense layers Introducing non-linearity relu activation function How to train your convolutional neural network models using backpropagation How and why to apply dropout CNN model training process How to build a convolutional neural network Generating predictions and calculating loss functions How to train and evaluate your MNIST classifier How to build a simple image classification CNN And much, much more! Python Machine LearningHere Is A Preview Of What You'll Learn Here... Basics behind machine learning techniques Different machine learning algorithms Fundamental machine learning applications and their importance Getting started with machine learning in Python, installing and starting SciPy Loading data and importing different libraries Data summarization and data visualization Evaluation of machine learning models and making predictions Most commonly used machine learning algorithms, linear and logistic regression, decision trees support vector machines, k-nearest neighbors, random forests Solving multi-clasisfication problems Data visualization with Matplotlib and data transformation with Pandas and Scikit-learn Solving multi-label classification problems And much, much more... Machine Learning With TensorFlowHere Is a Preview of What You'll Learn Here... What is machine learning Main uses and benefits of machine learning How to get started with TensorFlow, installing and loading data Data flow graphs and basic TensorFlow expressions How to define your data flow graphs and how to use TensorBoard for data visualization Main TensorFlow operations and building tensors How to perform data transformation using different techniques How to build high performance data pipelines using TensorFlow Dataset framework How to create TensorFlow iterators Creating MNIST classifiers with one-hot transformation Get this book bundle NOW and SAVE money!


Best Sellers


Product Details
  • ISBN-13: 9781719443715
  • Publisher: Createspace Independent Publishing Platform
  • Publisher Imprint: Createspace Independent Publishing Platform
  • Height: 203 mm
  • No of Pages: 498
  • Spine Width: 25 mm
  • Weight: 490 gr
  • ISBN-10: 1719443718
  • Publisher Date: 21 May 2018
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
  • Width: 127 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Createspace Independent Publishing Platform -
Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Programming With Python: 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!