Multifunctional Metasurfaces
Home > Science, Technology & Agriculture > Other technologies and applied sciences > Applied optics > Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)
Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)

Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
Introduction Early Attempts on Multifunctional Metasurfaces: The "Merging" Concept Multifunctional Metasurfaces/Metadevices Based on Single-Structure Meta-Atoms I: Linear-Polarization Excitations Multifunctional Metasurfaces/Metadevices Based on Single-Structure Meta-Atoms II: Circular-Polarization Excitations Linearly Polarized Active Multifunctional Metasurfaces Circularly Polarized Active Multifunctional Metasurfaces Conclusions and Perspectives References Authors' Biographies

About the Author :
He-Xiu Xu received his Ph.D. in Electronic Science and Technology from the Air Force Engineering University, China, in 2014. From 2015-2017, he was a postdoctoral fellow of the Physics Department at Fudan University (Shanghai, China). In 2017-2018, he was a visiting scholar in the Department of Electrical and Computer Engineering of the National University of Singapore. He joined the Department of Electronic Science and Technology of Air Force Engineering University in 2014 as an assistant professor, became an associate professor in 2016, and is now a full professor since 2019. He has been working in the fields of metamaterials, metasurfaces, and their potential applications in circuits and functional devices, and has published more than 120 papers in scientific journals. He was elected as a fellow of The Institution of Engineering and Technology (IET) in 2019. Shiwei Tang received his Ph.D. in the Physics Department of Fudan University, Shanghai, China, in 2014. He was a postdoctoral fellow in the Materials Science Department of Fudan University from 2014-2015. He joined Ningbo University, Ningbo, China in 2016 and was promoted to an Associate Professor in 2019. His current research interests include metamaterials/metasurfaces, microcavities, plasmonics, and nanophotonics. He has published over 60 papers in journals such as Advanced Materials, Advanced Functional Materials, ACS Nano, and Optics Express. Tong Cai received the B.S. and Ph.D. in Electrical Engineering from the Air Force Engineering University, Xi'an, China, in 2012, and 2017, respectively. He was with Fudan University as a visiting scholar from 2015-2017. He was with the Air Force Engineering University, where he became a Lecturer in 2017 and an associate professor in 2020, and has been a Post-Doctoral Researcher with Zhejiang University since 2019. His research interests include metamaterials, metasurfaces, and their applications to novel antennas and multifunctional devices. He obtained the support of the Postdoctoral Innovation Talents Support Program of China in 2019. He has authored over 40 peer-reviewed first author articles in journals such as Advanced Photonics, Advanced Optical Materials, IEEE Transactions on Antennas and Propagations, and Physical Review Applied. Shulin Sun received his Ph.D. in Physics at Fudan University in 2009. From 2010-2013, he was a Postdoctoral Fellow of the Department of Physics at National Taiwan University. In 2013, he joined the Department of Optical Science and Engineering at Fudan University, and has been a full Professor and associate dean of the department since 2019. He has been working in the fields of metamaterials/metasurfaces, plasmonics, and photonic crystals, and published over 70 papers in journals such as Nature Materials, Nano Letters, Advances in Optics and Photonics, and Light: Science & Applications. Qiong He received his Ph.D. degree in Physics from the Paris Institute of Optics in Paris-Sud University (Orsay, France) in 2008. From 2009-2013, he was a postdoctoral fellow in the Physics Department of Fudan University. He is currently an associate professor in the Physics Department of Fudan University (Shanghai, China). His research interests focus on metamaterials and plasmonics. He has coauthored more than 80 publications in scientific journals, including Nature Materials, Physics Review X, Physics Review Letters, Advances in Optics and Photonics, Light: Science & Applications, and Nano Letters. Lei Zhou received his Ph.D. in Physics from Fudan University, China, in 1997. From 1997-2000, he was a postdoctoral fellow of the Institute for Material Research at Tohoku University (Sendai, Japan). In 2000-2004, he was a visiting scholar in the Physics Department of the Hong Kong University of Science and Technology. He joined the Physics Department of Fudan University in 2004 as a professor, became a "Xi-De" chair professor in 2013, and is now Chair of the department. He has been working in the fields of magnetism, metamaterials, photonic crystals, and plasmonics, and has published more than 180 papers in scientific journals. He was elected as a fellow of The Optical Society (OSA) in 2019, and a Clarivate Analytics Global Highly Cited Researcher (2019-2020).


Best Sellers


Product Details
  • ISBN-13: 9781681738963
  • Publisher: Morgan & Claypool Publishers
  • Publisher Imprint: Morgan & Claypool Publishers
  • Height: 235 mm
  • No of Pages: 184
  • Series Title: Synthesis Lectures on Materials and Optics
  • Weight: 333 gr
  • ISBN-10: 1681738961
  • Publisher Date: 16 Mar 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Design Principles and Device Realizations
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)
Morgan & Claypool Publishers -
Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Multifunctional Metasurfaces: Design Principles and Device Realizations(Synthesis Lectures on Materials and Optics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!