Data Management in Machine Learning Systems
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)
Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)

Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques. In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators; data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, and model serving. Given the rapidly evolving field, we strive for a balance between an up-to-date survey of ML systems, an overview of the underlying concepts and techniques, as well as pointers to open research questions. Hence, this book might serve as a starting point for both systems researchers and developers.

About the Author :
Matthias Boehm is a professor at Graz University of Technology, Austria, where he holds a BMVIT-endowed chair for data management. Prior to joining TU Graz in 2018, he was a research staff member at IBM Research - Almaden, CA, USA, with a focus on compilation and runtime techniques for declarative, large-scale machine learning. He received his Ph.D. from Dresden University of Technology, Germany in 2011 with a dissertation on cost-based optimization of integration flows. His previous research also includes systems support for time series forecasting as well as in-memory indexing and query processing. Matthias is a recipient of the 2016 VLDB Best Paper Award, and a 2016 SIGMOD Research Highlight Award. Arun Kumar is an Assistant Professor at the University of California, San Diego. He received his Ph.D. from the University of Wisconsin-Madison in 2016. His research interests are in the intersection of data management, systems, and ML, with a focus on making ML-based data analytics easier, faster, cheaper, and more scalable. Ideas from his work have been adopted by many companies, including EMC, Oracle, Cloudera, Facebook, and Microsoft. He is a recipient of the Best Paper Award at SIGMOD 2014, the 2016 CS dissertation research award from UW-Madison, a 2016 Google Faculty Research Award, and a 2018 Hellman Fellowship. Jun Yang is a Professor of Computer Science at Duke University, where he has been teaching since receiving his Ph.D. from Stanford University in 2001. He is broadly interested in databases and data-intensive systems. He is a recipient of the NSF CAREER Award, IBM Faculty Award, HP Labs Innovation Research Award, and Google Faculty Research Award. He also received the David and Janet Vaughan Brooks Teaching Award at Duke. His current research interests lie in making data analysis easier and more scalable for scientists, statisticians, and journalists. H. V. Jagadish is Bernard A Galler Collegiate Professor of Electrical Engineering and Computer Science, and Distinguished Scientist at the Institute for Data Science, at the University of Michigan in Ann Arbor. Prior to 1999, he was Head of the Database Research Department at AT&T Labs, Florham Park, NJ. Professor Jagadish is well known for his broad-ranging research on information management, and has approximately 200 major papers and 37 patents. He is a fellow of the ACM, The First Society in Computing, (since 2003) and serves on the board of the Computing Research Association (since 2009). He has been an Associate Editor for the ACM Transactions on Database Systems (1992-1995), Program Chair of the ACM SIGMOD annual conference (1996), Program Chair of the ISMB conference (2005), a trustee of the VLDB (Very Large DataBase) foundation (2004-2009), Founding Editor-in-Chief of the Proceedings of the VLDB Endowment (2008-2014), and Program Chair of the VLDB Conference (2014). Among his many awards, he won the ACM SIGMOD Contributions Award in 2013 and the David E Liddle Research Excellence Award (at the University of Michigan) in 2008.


Best Sellers


Product Details
  • ISBN-13: 9781681734972
  • Publisher: Morgan & Claypool
  • Publisher Imprint: Morgan & Claypool
  • Language: English
  • Series Title: Synthesis Lectures on Data Management
  • ISBN-10: 1681734974
  • Publisher Date: 25 Feb 2019
  • Binding: Digital (delivered electronically)
  • No of Pages: 173


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)
Morgan & Claypool -
Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Management in Machine Learning Systems: (Synthesis Lectures on Data Management)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!