Buy Computational Texture and Patterns at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)
Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)

Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance--to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.

About the Author :
Dr. Kristin J. Dana received a Ph.D. from Columbia University (New York, NY) in 1999, an M.S. degree from Massachusetts Institute of Technology in 1992 (Cambridge, MA), and a B.S. degree in 1990 from the Cooper Union (New York, NY). She is currently a Full Professor in the Department of Electrical and Computer Engineering at Rutgers University. She is also a member of the graduate faculty of Rutgers Computer Science Department. Prior to academia, Dr. Dana was on the research staff at Sarnoff Corporation a subsidiary of SRI (formerly Stanford Research Institute), developing real-time motion estimation algorithms for applications in defense, biomedicine, and entertainment industries. She is the recipient of the General Electric Faculty of the Future fellowship in 1990, the Sarnoff Corporation Technical Achievement Award in 1994 for the development of a practical algorithm for the real-time alignment of visible and infrared video images, the 2001 National Science Foundation Career Award for a program investigating surface science for vision and graphics, and a team recipient of the Charles Pankow Innovation Award in 2014 from the ASCE. Dr. Dana's research expertise is in computer vision including computational photography, machine learning, quantitative dermatology, illumination modeling, texture and reflectance models, optical devices, and applications of robotics. On these topics, she has published over 70 papers in leading journals and conferences. Gérard Medioni received the Diplôme d'Ingenieur in Information at The École Nationale Supérieure es Télécommunications, in 1977, and the M.S. and Ph.D. degrees in Computer Science from the University of Southern California, in 1980 and 1983, respectively. He has been at USC since then, and is currently Professor of Computer Science and Electrical Engineering, co-director of the Institute for Robotics and Intelligent Systems (IRIS), and co-director of the USC Games Institute. He served as Chairman of the Computer Science Department from 2001 to 2007. Prior to this, he was President and CEO of I.C. Vision, in Los Angeles, California, and held positions of Associate Professor, from 1992-1999, Assistant Professor, from 1987-1992, and Research Assistant Professor, from 1983-1987, at the Departments of Computer Science and Electrical Engineering, at the University of Southern California. From 1979-1983, he was a Research Assistant in the Intelligent Systems Group at the University of Southern California. Prior to his academic career, he was a research engineer at Underwater Signal Processing Division at Thomson-CSF, in Cagnes sur Mer, France. From 2000 to 2001, while on sabbatical leave, he was Chief Technical Officer at Geometrix, Inc. in San Jose, California. Professor Medioni has made significant contributions to the field of computer vision. His research covers a broad spectrum of the field, such as edge detection, stereo and motion analysis, shape inference and description, and system integration. He has published 3 books, over 50 journal papers and 150 conference articles, and is the recipient of 8 international patents. Prof. Medioni is associate editor of the Image and Vision Computing Journal, associate editor of the Pattern Recognition and Image Analysis Journal, and associate editor of the International Journal of Image and Video Processing. Prof. Medioni served as program co-chair of the 1991 IEEE CVPR Conference in Hawaii, of the 1995 IEEE Symposium on Computer Vision in Miami, general co-chair of the1997 IEEE CVPR Conference in Puerto Rico, conference co-chair of the 1998 ICPR Conference in Australia, general co-chair of the 2001 IEEE CVPR Conference in Kauai, general co-chair of the 2007 IEEE CVPR Conference in Minneapolis, and general co-chair of the upcoming 2009 IEEE CVPR Conference in Miami. He is a Fellow of IAPR, a Fellow of the IEEE, and a Fellow of AAAI. Sven Dickinson received the B.A.Sc. degree in Systems Design Engineering from the University of Waterloo in 1983, and the M.S. and Ph.D. degrees in Computer Science from the University of Maryland, in 1988 and 1991, respectively. He is currently Professor of Computer Science at the University of Toronto, where he serves as Acting Chair. Prior to that, he served as Departmental Vice Chair, from 2003-2006, and as Associate Professor, from 2000-2007. From 1995-2000, he was an Assistant Professor of Computer Science at Rutgers University, where he also held a joint appointment in the Rutgers Center for Cognitive Science (RuCCS) and membership in the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). From 1994-1995, he was a Research Assistant Professor in the Rutgers Center for Cognitive Science, and from 1991-1994, a Research Associate at the Artificial Intelligence Laboratory, University of Toronto. He has held affiliations with the MIT Media Laboratory (Visiting Scientist, 1992-1994), the University of Toronto (Visiting Assistant Professor, 1994 1997), and the Computer Vision Laboratory of the Center for Automation Research at the University of Maryland (Assistant Research Scientist, 1993-1994, Visiting Assistant Professor, 1994 1997). Prior to his academic career, he worked in the computer vision industry, designing image processing systems for Grinnell Systems Inc., San Jose, CA, 1983-1984, and optical character recognition systems for DEST, Inc., Milpitas, CA, 1984-1985. His research interests revolve around the problem of object recognition, in general, and generic object recognition, in particular. He has explored a multitude of generic shape representations, and their common representation as hierarchical graphs has led to his interest in inexact graph indexing and matching. His interest in shape representation and matching has also led to his research in object tracking, vision-based navigation, content based image retrieval, and the use of language to guide perceptual grouping, object recognition, and motion analysis. One of the focal points of his research is the problem of image abstraction, which he believes is critical in bridging the representational gap between exemplar-based and generic object recognition. He has published over 100 papers on these topics in refereed journals, conferences, and edited collections. In 1996, he received the NSF CAREER award for his work in generic object recognition, and in 2002, received the Government of Ontario Premiere's Research Excellence Award (PREA), also for his work in generic object recognition. He was co-chair of the 1997, 1999, 2004, and 2007 IEEE International Workshops on Generic Object Recognition (or Object Categorization), co chaired the DIMACS Workshop on Graph Theoretic Methods in Computer Vision in 1999, and co-chaired the First International Workshop on Shape Perception in Human and Computer Vision in 2008. From 1998-2002, he served as Associate Editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence, in which he also co-edited a special issue on graph algorithms and computer vision, which appeared in 2001. He currently serves as Associate Editor for the journals: International Journal of Computer Vision; Image and Vision Computing; Pattern Recognition Letters; IET Computer Vision; and the Journal of Electronic Imaging.


Best Sellers


Product Details
  • ISBN-13: 9781681730127
  • Publisher: Morgan & Claypool
  • Publisher Imprint: Morgan & Claypool
  • Language: English
  • Series Title: Synthesis Lectures on Computer Vision
  • ISBN-10: 168173012X
  • Publisher Date: 13 Sep 2018
  • Binding: Digital (delivered electronically)
  • No of Pages: 113
  • Sub Title: From Textons to Deep Learning


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)
Morgan & Claypool -
Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Texture and Patterns: From Textons to Deep Learning(Synthesis Lectures on Computer Vision)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!