Visual Domain Adaptation in the Deep Learning Era - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)
Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)

Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.

Table of Contents:
Preface Figure Credits Motivation Theoretical Background Traditional Methods Deep Domain Adaptation Self-Based Learning for DA Beyond Classical Domain Adaptation Domain Generalization Learning to Learn Across Domains Bibliography Authors' Biographies

About the Author :
Gabriela Csurka is a Principal Scientist at NAVER LABS Europe, France. Her main research interests are in computer vision for image understanding, 3D reconstruction, visual localization, as well as domain adaptation and transfer learning. She has contributed to around 100 scientific communications, several on the topic of DA. She has given several invited talks and organized a tutorial on domain adaptation at ECCV'20. In 2017 she edited the Springer book Domain Adaptation for Computer Vision Applications. Timothy M. Hospedales is a Professor at the University of Edinburgh; Principal Researcher at Samsung AI Research Centre, Cambridge; and Alan Turing Institute Fellow. His research focuses on lifelong machine learning, broadly defined to include multi-domain/multi-task learning, domain adaptation, transfer learning, and meta-learning, with applications including computer vision, language, reinforcement learning for control, and finance. He has co-authored numerous papers on domain adaptation, domain generalization, and transfer learning in major venues including CVPR, ICCV, ECCV, ICML, ICLR, NeurIPS, and AAAI. He teaches computer vision at Edinburgh University and has given invited talks and tutorials on these topics at various international venues, renowned universities, and research institutes. Mathieu Salzmann is a Senior Researcher at EPFL and, since May 2020, a part-time Artificial Intelligence Engineer at ClearSpace. His research focuses on developing machine learning algorithms for visual scene understanding, including object recognition, detection, semantic segmentation, 6D pose estimation, and 3D reconstruction. He has published articles on the topic of domain adaptation at major venues, including CVPR, ICCV, ICLR, AAAI, TPAMI, and JMLR. Furthermore, he has been invited to present his domain adaptation work at various venues and internationally renowned universities. Tatiana Tommasi is Associate Professor at Politecnico di Torino, Italy and an affiliated researcher at the Italian Institute of Technology. She pioneered the area of transfer learning for computer vision and has large experience in domain adaptation, generalization, and multimodal learning with applications for robotics and medical imaging. Tatiana received the best paper award at the 1st edition of Task-CV workshop at ECCV'14 and since then she has been leading the organization of the following workshop editions. She also organized a workshop on similar topics at NIPS'13 and '14 and taught a tutorial at ECCV'14 and '20.


Best Sellers


Product Details
  • ISBN-13: 9781636393438
  • Publisher: Morgan & Claypool Publishers
  • Publisher Imprint: Morgan & Claypool Publishers
  • Height: 229 mm
  • No of Pages: 190
  • Series Title: Synthesis Lectures On Computer Vision
  • ISBN-10: 1636393438
  • Publisher Date: 05 Apr 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)
Morgan & Claypool Publishers -
Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Visual Domain Adaptation in the Deep Learning Era: (Synthesis Lectures On Computer Vision)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!