Time Series Forecasting Using Foundation Models
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Time Series Forecasting Using Foundation Models
Time Series Forecasting Using Foundation Models

Time Series Forecasting Using Foundation Models


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Make accurate time series predictions with powerful pretrained foundation models! You don't need to spend weeks--or even months--coding and training your own models for time series forecasting. Time Series Forecasting Using Foundation Models shows you how to make accurate predictions using flexible pretrained models. In Time Series Forecasting Using Foundation Models you will discover: - The inner workings of large time models - Zero-shot forecasting on custom datasets - Fine-tuning foundation forecasting models - Evaluating large time models Time Series Forecasting Using Foundation Models teaches you how to do efficient forecasting using powerful time series models that have already been pretrained on billions of data points. You'll appreciate the hands-on examples that show you what you can accomplish with these amazing models. Along the way, you'll learn how time series foundation models work, how to fine-tune them, and how to use them with your own data. About the book Time Series Forecasting Using Foundation Models takes a practical approach to solving time series problems using pre-trained foundation models. In this easy-to-follow guide, you'll learn instantly-useful skills like zero-shot forecasting and informing pretrained models with your own data. You'll put theory into practice immediately as you start building your own small-scale foundation model to illustrate pretraining, transfer learning, and fine-tuning in chapter 2. Next, you'll dive into cutting-edge models like TimeGPT and Chronos and see how they can deliver zero-shot probabilistic forecasting, point forecasting, and more. You'll even find out how you can reprogram an LLM into a time-series forecaster. All the Python code and hands-on experiments run on a normal laptop. No high-performance GPU required! About the reader For data scientists and machine learning engineers familiar with the basics of time series forecasting theory. Examples in Python. About the author Marco Peixeiro is a seasoned data science instructor at Data Science with Marco, who works at Nixtla building cutting-edge open-source forecasting Python libraries. He is the author of Time Series Forecasting in Python. Get a free eBook (PDF or ePub) from Manning as well as access to the online liveBook format (and its AI assistant that will answer your questions in any language) when you purchase the print book.

About the Author :
Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada's largest banks. He is an active contributor to Towards Data Science, an instructor on Udemy, and on YouTube in collaboration with freeCodeCamp.


Best Sellers


Product Details
  • ISBN-13: 9781633435896
  • Publisher: Manning Publications
  • Publisher Imprint: Manning Publications
  • Language: English
  • Returnable: Y
  • ISBN-10: 163343589X
  • Publisher Date: 27 Jan 2026
  • Binding: Paperback
  • No of Pages: 270
  • Weight: 372 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Time Series Forecasting Using Foundation Models
Manning Publications -
Time Series Forecasting Using Foundation Models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Time Series Forecasting Using Foundation Models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!