Buy Conditional Gradient Methods by Sebastian Pokutta
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Optimization > Conditional Gradient Methods: From Core Principles to AI Applications
Conditional Gradient Methods: From Core Principles to AI Applications

Conditional Gradient Methods: From Core Principles to AI Applications


     0     
5
4
3
2
1



Available


X
About the Book

Conditional Gradient Methods: From Core Principles to AI Applications offers a definitive and modern treatment of one of the most elegant and versatile algorithmic families in optimization: the Frank–Wolfe method and its many variants. Originally proposed in the 1950s, these projection-free techniques have seen a powerful resurgence, now playing a central role in machine learning, signal processing, and large-scale data science. This comprehensive monograph unites deep theoretical insights with practical considerations, guiding readers through the foundations of constrained optimization and into cutting-edge territory, including stochastic, online, and distributed settings. With a clear narrative, rigorous proofs, and illuminating illustrations, the book demystifies adaptive variants, away-steps, and the nuances of dealing with structured convex sets. A FrankWolfe.jl Julia package that implements most of the algorithms in the book is available on a supplementary website.

About the Author :
Sebastian Pokutta is Vice President of the Zuse Institute Berlin (ZIB) and Professor of Mathematics at TU Berlin. Gábor Braun is currently a member of Zuse Institute Berlin. Hamed Hassani is an associate professor of the Electrical and Systems Engineering Department, Computer and Information Systems Department, and the Department of Statistics and Data Science at the University of Pennsylvania. Alejandro Carderera is a Senior Applied Researcher at GitHub, working in Copilot's Applied Science and Models team, focusing on code completions and code review. Aryan Mokhtari is an Assistant Professor in the Electrical and Computer Engineering Department of the University of Texas at Austin, where he holds the Fellow of Texas Instruments/Kilby. Cyrille Combettes is a quantitative researcher at Capital Fund Management in Paris. Amin Karbasi is Chief Scientist at Robust Intelligence and a professor at Yale University.

Review :
Conditional gradient algorithms have become an essential part of the algorithmic toolbox in machine learning, signal processing, and related fields. This monograph offers a comprehensive review of both classical results and recent generalizations, including extensions to large-scale settings. The presentation is notably clear, featuring illustrations, detailed proofs, and application examples. It will serve as an important reference for graduate students and researchers in data science."" — Francis Bach, Princeton University ""Conditional Gradient Methods is a thorough and accessible guide to one of the most versatile families of optimization algorithms. The book traces the rich history of the conditional gradient algorithm and explores its modern advancements, offering a valuable resource for both experts and newcomers. With clear explanations of the algorithms, their analysis, and practical applications, the authors provide a go-to reference for anyone tackling constrained optimization problems. This book is sure to inspire fresh ideas and drive advancements in the field."" — Elad Hazan, INRIA


Best Sellers


Product Details
  • ISBN-13: 9781611978551
  • Publisher: Society for Industrial & Applied Mathematics,U.S.
  • Publisher Imprint: Society for Industrial & Applied Mathematics,U.S.
  • Language: English
  • Sub Title: From Core Principles to AI Applications
  • ISBN-10: 1611978556
  • Publisher Date: 31 Oct 2025
  • Binding: Paperback
  • No of Pages: 198


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Conditional Gradient Methods: From Core Principles to AI Applications
Society for Industrial & Applied Mathematics,U.S. -
Conditional Gradient Methods: From Core Principles to AI Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Conditional Gradient Methods: From Core Principles to AI Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!