About the Book
Thisbookisintendedformolecularbiologistswhoperformquantitativeanalysesondata emanatingfromtheir?eldandforthestatisticianswhoworkwithmolecularbiologists andotherbiomedicalresearchers. Therearemanyexcellenttextbooksthatprovidefun- mentalcomponentsforstatisticaltrainingcurricula. Therearealsomany"byexpertsfor experts"booksinstatisticsandmolecularbiologywhichrequirein-depthknowledgein bothsubjectstobetakenfulladvantageof. Sofar,nobookinstatisticshasbeenpublished thatprovidesthebasicprinciplesofproperstatisticalanalysesandprogressestoamore advancedstatisticsinresponsetorapidlydevelopingtechnologiesandmethodologiesin the?eldofmolecularbiology. Respondingtothissituation,ourbookaimsatbridgingthegapbetweenthesetwo extremes. Molecularbiologistswillbene?tfromtheprogressivestyleofthebookwhere basicstatisticalmethodsareintroducedandgraduallyelevatedtoanintermediatelevel. Similarly,statisticianswillbene?tfromlearningthevariousbiologicaldatageneratedfrom the?eldofmolecularbiology,thetypesofquestionsofinteresttomolecularbiologists, andthestatisticalapproachestoanalyzingthedata. Thestatisticalconceptsandmethods relevanttostudiesinmolecularbiologyarepresentedinasimpleandpracticalmanner. Speci?cally,thebookcoversbasicandintermediatestatisticsthatareusefulforclassical and molecular biology settings and advanced statistical techniques that can be used to helpsolveproblemscommonlyencounteredinmodernmolecularbiologystudies,such assupervisedandunsupervisedlearning,hiddenMarkovmodels,manipulationandan- ysisofdatafromhigh-throughputmicroarrayandproteomicplatform,andsynthesisof these evidences.
A tutorial-type format is used to maximize learning in some chapters. Advicefromjournaleditorsonpeer-reviewedpublicationandsomeusefulinformationon softwareimplementationarealsoprovided. Thisbookisrecommendedforuseassupplementarymaterialbothinsideandoutside classroomsorasaself-learningguideforstudents,scientists,andresearcherswhodealwith numericdatainmolecularbiologyandrelated?elds. Thosewhostartasbeginners,but desiretobeatanintermediatelevel,will?ndthisbookespeciallyusefulintheirlearning pathway. WewanttothankJohnWalker(serieseditor),PatrickMarton,DavidCasey,andAnne Meagher,(editorsatSpringerandHumana)andShanthyJaganathan(Integra-India). The followingpersonsprovidedusefuladviceandcommentsonselectionoftopics,referralto expertsineachtopic,and/orchapterreviewsthatwetrulyappreciate:StephenLooney(a former editor of this book), Stan Young, Dmitri Zaykin, Douglas Hawkins, Wei Pan, Alexandre Almeida, John Ho, Rebecca Doerge, Paula Trushin, Kevin Morgan, Jason Osborne,PeterWestfall,JennyXiang,Ya-linChiu,YolandaBarron,HuiboShao,Alvin Mushlin,andRonaldFanta. Drs. Bang,Zhou,andMazumdarwerepartiallysupported byClinicalTranslationalScienceCenter(CTSC)grant(UL1-RR024996).
HeejungBang vii Contents Preface...vii Contributors...xi PARTIBASICSTATISTICS...1 1. ExperimentalStatisticsforBiologicalSciences...3 HeejungBangandMarieDavidian 2. NonparametricMethodsforMolecularBiology...105 KnutM. WittkowskiandTingtingSong 3. BasicsofBayesianMethods...155 SujitK. Ghosh 4. TheBayesiant-TestandBeyond ...179 MithatGonen PARTII DESIGNSANDMETHODSFORMOLECULARBIOLOGY...201 5. SampleSizeandPowerCalculationforMolecularBiologyStudies...203 Sin-HoJung 6. DesignsforLinkageAnalysisandAssociationStudiesofComplexDiseases...219 YuehuaCui,GengxinLi,ShaoyuLi,andRonglingWu 7. IntroductiontoEpigenomicsandEpigenome-WideAnalysis...243 MelissaJ. FazzariandJohnM. Greally 8. Exploration,Visualization,andPreprocessingofHigh-DimensionalData...267 ZhijinWuandZhiqiangWu PARTIII STATISTICALMETHODSFORMICROARRAYDATA ...285 9. IntroductiontotheStatisticalAnalysisofTwo-ColorMicroarrayData...287 MartinaBremer,EdwardHimelblau,andAndreasMadlung 10. BuildingNetworkswithMicroarrayData...315 BradleyM. Broom,WareeRinsurongkawong,LajosPusztai, andKim-AnhDo PARTIV ADVANCEDORSPECIALIZEDMETHODSFORMOLECULARBIOLOGY. . 345 11. SupportVectorMachinesforClassi?cation:AStatisticalPortrait...347 YoonkyungLee 12.
AnOverviewofClusteringAppliedtoMolecularBiology ...369 RebeccaNugentandMarinaMeila ix xContents 13. HiddenMarkovModelandItsApplicationsinMotifFindings...405 JingWuandJunXie 14. DimensionReductionforHigh-DimensionalData...417 LexinLi 15. IntroductiontotheDevelopmentandValidationofPredictiveBiomarker ModelsfromHigh-ThroughputDataSets ...435 XutaoDengandFabienCampagne 16. Multi-geneExpression-basedStatisticalApproachestoPredicting Patients'ClinicalOutcomesandResponses...471 FengCheng,Sang-HoonCho,andJaeK. Lee 17. Two-StageTestingStrategiesforGenome-WideAssociationStudies inFamily-BasedDesigns ...485 AmyMurphy,ScottT. Weiss,andChristophLange 18. StatisticalMethodsforProteomics ...497 KlausJung PARTVMETA-ANALYSISFORHIGH-DIMENSIONALDATA ...509 19. StatisticalMethodsforIntegratingMultipleTypesofHigh-ThroughputData. . 511 YangXieandChulAhn 20. ABayesianHierarchicalModelforHigh-DimensionalMeta-analysis...531 FeiLiu 21. MethodsforCombiningMultipleGenome-WideLinkageStudies...541 TreciaA. KippolaandStephanieA. Santorico PARTVI OTHERPRACTICALINFORMATION ...561 22. ImprovedReportingofStatisticalDesignandAnalysis:Guidelines, Education,andEditorialPolicies...5
63 MadhuMazumdar,SampritBanerjee,andHeatherL. VanEpps 23. StataCompanion...599 JenniferSousaBrennan SubjectIndex...627 Contributors CHULAHN* Division of Biostatistics, Department of Clinical Sciences, The Harold C.
Table of Contents:
Basic Statistics.- Experimental Statistics for Biological Sciences.- Nonparametric Methods for Molecular Biology.- Basics of Bayesian Methods.- The Bayesian t-Test and Beyond.- Designs and Methods for Molecular Biology.- Sample Size and Power Calculation for Molecular Biology Studies.- Designs for Linkage Analysis and Association Studies of Complex Diseases.- to Epigenomics and Epigenome-Wide Analysis.- Exploration, Visualization, and Preprocessing of High–Dimensional Data.- Statistical Methods for Microarray Data.- to the Statistical Analysis of Two-Color Microarray Data.- Building Networks with Microarray Data.- Advanced or Specialized Methods for Molecular Biology.- Support Vector Machines for Classification: A Statistical Portrait.- An Overview of Clustering Applied to Molecular Biology.- Hidden Markov Model and Its Applications in Motif Findings.- Dimension Reduction for High-Dimensional Data.- to the Development and Validation of Predictive Biomarker Models from High-Throughput Data Sets.- Multi-gene Expression-based Statistical Approaches to Predicting Patients’ Clinical Outcomes and Responses.- Two-Stage Testing Strategies for Genome-Wide Association Studies in Family-Based Designs.- Statistical Methods for Proteomics.- Meta-Analysis for High-Dimensional Data.- Statistical Methods for Integrating Multiple Types of High-Throughput Data.- A Bayesian Hierarchical Model for High-Dimensional Meta-analysis.- Methods for Combining Multiple Genome-Wide Linkage Studies.- Other Practical Information.- Improved Reporting of Statistical Design and Analysis: Guidelines, Education, and Editorial Policies.- Stata Companion.
Review :
"Here is a comprehensive book that systematically covers both basic and advanced statistical topics in molecular biology, including parametric and nonparametric, and frequentist and Bayesian methods. I am highly impressed by the breadth and depth of the applications. I strongly recommend this book for both statisticians and biologists who need to communicate with each other in this exciting field of research." (Robert C. Elston, PhD., Director, Division of Genetic and Molecular Epidemiology, Case Western Reserve University)
"An extraordinary exposition of the central topics of modern molecular biology, presented by practicing experts who weave together rigorous theory with practical techniques and illustrative examples." (George C. Newman, MD, PhD, Chairman, Neurosensory Sciences, Albert Einstein Medical Center)
"I cannot think of anything we need now in translation research field more than more efficient cross talk between molecular biology and statistics. This book is just on target. It fills the gap." (Iman Osman, MB, BCh, MD, Director, Interdisciplinary Melanoma Cooperative Program, New York University Langone Medical Center)