Spatial Regression Models for the Social Sciences - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Society and Social Sciences > Sociology and anthropology > Sociology > Social research and statistics > Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)
Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)

Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)


     0     
5
4
3
2
1



International Edition


X
About the Book

Providing comprehensive coverage of spatial regression methods, this text explains what each method is and when and how to apply it, connecting concepts to social science research topics. Avoiding mathematical formulas and symbols as much as possible, the book introduces the methods in an easy-to-follow manner, providing comprehensive coverage and using the same social science example throughout to demonstrate the applications of each method and what the results can tell us.

Table of Contents:
Series Editor’s Introduction Preface Acknowledgments About the Authors Chapter 1: Introduction Learning Objectives 1.1 Spatial Thinking in the Social Sciences 1.2 Introduction to Spatial Effects 1.3 Introduction to the Data Example 1.4 Structure of the Book Study Questions Chapter 2: Exploratory Spatial Data Analysis Learning Objectives 2.1 Exploratory Data Analysis 2.2 Neighborhood Structure and Spatial Weight Matrix 2.3 Spatial Autocorrelation, Dependence, and Heterogeneity 2.4 Exploratory Spatial Data Analysis Study Questions Chapter 3: Models Dealing With Spatial Dependence Learning Objectives 3.1 Standard Linear Regression and Diagnostics for Spatial Dependence 3.2 Spatial Lag Models 3.3 Spatial Error Models Study Questions Chapter 4: Advanced Models Dealing With Spatial Dependence Learning Objectives 4.1 Spatial Error Models With Spatially Lagged Responses 4.2 Spatial Cross-Regressive Models 4.3 Multilevel Linear Regression Study Questions Chapter 5: Models Dealing With Spatial Heterogeneity Learning Objectives 5.1 Aspatial Regression Methods 5.2 Spatial Regime Models 5.3 Geographically Weighted Regression Study Questions Chapter 6: Models Dealing With Both Spatial Dependence and Spatial Heterogeneity Learning Objectives 6.1 Spatial Regime Lag Models 6.2 Spatial Regime Error Models 6.3 Spatial Regime Error and Lag Models 6.4 Model Fitting 6.5 Data Example Study Questions Chapter 7: Advanced Spatial Regression Models Learning Objectives 7.1 Spatio-temporal Regression Models 7.2 Spatial Regression Forecasting Models 7.3 Geographically Weighted Regression for Forecasting Study Questions Chapter 8: Practical Considerations for Spatial Data Analysis Learning Objectives 8.1 Data Example of U.S. Poverty in R 8.2 General Procedure for Spatial Social Data Analysis Study Questions Appendix A: Spatial Data Sources Appendix B: Results Using Forty Spatial Weight Matrices available on the website at study.sagepub.com/researchmethods/quantitative-statistical-research/chi Glossary References Index

About the Author :
Dr. Guangqing Chi is Associate Professor of Rural Sociology and Demography with courtesy appointments in Department of Sociology and Criminology and Department of Public Health Sciences at The Pennsylvania State University. He also serves as Director of the Computational and Spatial Analysis Core of the Social Science Research Institute and Population Research Institute. Dr. Chi is an environmental demographer. His research examines the interactions between population change and the built and natural environments. He pursues his research program within interwoven research projects on climate change, land use, and community resilience, with an emphasis on environmental migration and critical infrastructure/transportation and population change within the smart cities framework. Most recently, Dr. Chi has applied his expertise in big data to study issues of generalizability and reproducibility of Twitter data for population and social science research. He also studies environmental migration, including projects on coupled migrant-pasture systems in Central Asia, permafrost erosion and coastal communities, and ecological migration in China. Dr. Chi′s research has been supported through grants from national and state agencies, including the National Science Foundation, National Institutes of Health, National Aeronautics and Space Administration, and U.S. Department of Transportation. He has published about 50 articles in peer-reviewed journals. His research on gasoline prices and traffic safety has been highlighted more than 2,000 times by various news media outlets, such as National Public Radio and Huffington Post. Dr. Jun Zhu is Professor of Statistics at the University of Wisconsin–Madison. She is a faculty member in the Department of Statistics and the Department of Entomology, as well as a faculty affiliate with the Center for Demography and Ecology and the Department of Biostatistics and Medical Informatics. The main components of her research activities are statistical methodological research and scientific collaborative research. Her statistical methodological research concerns developing statistical methodology for analyzing spatially referenced data (spatial statistics) and spatial data repeatedly sampled over time (spatio-temporal statistics) that arise often in the biological, physical, and social sciences. Her collaborative research concerns applying modern statistical methods, especially spatial and spatio-temporal statistics, to studies of agricultural, biological, ecological, environmental, and social systems conducted by research scientists. Dr. Zhu’s methodological and collaborative research projects have been supported by the Environmental Protection Agency, National Institutes of Health, National Science Foundation, U.S. Department of Agriculture, U.S. Department of Defense, and U.S. Geographical Society.  She is a Fellow of the American Statistical Association and a recipient of the Distinguished Achievement Medal in its Section of Statistics and the Environment.

Review :
"This is an important book bringing together a family of related statistical measures and explaining them in a coherent way. Written by leading researchers in the field, it uses a consistent spatial example and applies and explains various measures within a unifying frame to aid in understanding by readers. As real-time spatial data becomes increasingly prevalent, the need for analysts to accurately and meaningfully interpret this data is rapidly growing." "The field of spatial regression has grown rapidly over the last decade. This book goes a long way toward filling a gap by providing students and practitioners with a useful text that is written at a level that should make it broadly accessible." "This is an exceptionally well-written text on spatial data analysis tailored for social science research. It deals with spatial thinking and regression analysis with remarkable depth and expertise in a comprehensive and easy-to-follow manner. It is a primer that should be on every social scientist′s shelf." "This introductory book offers a full overview of the different ways in which a standard linear regression model can be extended to contain spatial effects." "Spatial data science is an evolving field. This is a valuable book that introduces to students, researchers, and faculty the foundation of spatial statistics and offers tremendous insights on how to statistically analyze geo-spatial data. Anyone working geo-data must read this book if they want accurate and unbiased research findings." the book’s main strength is its efficiency, organization, and methodical approach to explaining many concepts in spatial regression. It does not necessarily progress in concept difficulty nor in concept importance, but mixes both to form a coherent volume that is a strong reference for both looking up terms as a "refresher" and as a guide to diversifying one’s own spatial regression techniques for a comparative analysis


Best Sellers


Product Details
  • ISBN-13: 9781544302072
  • Publisher: SAGE Publications Inc
  • Publisher Imprint: SAGE Publications Inc
  • Height: 254 mm
  • No of Pages: 272
  • Series Title: Advanced Quantitative Techniques in the Social Sciences
  • Width: 177 mm
  • ISBN-10: 154430207X
  • Publisher Date: 01 Jul 2019
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 760 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)
SAGE Publications Inc -
Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Spatial Regression Models for the Social Sciences: (Advanced Quantitative Techniques in the Social Sciences)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!