Buy New Mathematical Methods for Physics by Jean-Francois Pommaret
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Mathematical physics > New Mathematical Methods for Physics
New Mathematical Methods for Physics

New Mathematical Methods for Physics


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The concept of group has been introduced in mathematics for the first time by E. Galois (1830) and slowly passed from algebra to geometry with the work of S. Lie on Lie groups (1880) and Lie pseudogroups (1890) of transformations. The concept of a finite length differential sequence, now called the Janet sequence, had been described for the first time by M. Janet (1920). Then, the work of D. C. Spencer (1970) has been the first attempt to use the formal theory of systems of partial differential equations (PDE) in order to study the formal theory of Lie pseudogroups. However, the linear and nonlinear Spencer sequences for Lie pseudogroups, though never used in physics, largely supersede the Cartan structure equations (1905) and are quite different from the Vessiot structure equations (1903), introduced for the same purpose but never acknowledged by E. Cartan or successors. Meanwhile, mixing differential geometry with homological algebra, M. Kashiwara (1970) created algebraic analysis in order to study differential modules and double duality. By chance, unexpected arguments have been introduced by the brothers E. and F. Cosserat (1909) in order to revisit elasticity and by H. Weyl (1918) in order to revisit electromagnetism through a unique differential sequence only depending on the structure of the conformal group of space-time. The classical Galois theory deals with certain finite algebraic extensions and establishes a bijective order reversing correspondence between the intermediate fields and the subgroups of a group of permutations called the Galois group of the extension. It has been the dream of many mathematicians at the end of the nineteenth century to generalize these results to systems of linear or algebraic PDE and the corresponding finitely generated differential extensions, in order to be able to add the word differential in front of any classical statement. The achievement of the Picard-Vessiot theory by E. Kolchin and coworkers between 1950 and 1970 is now well-known. However, the work of Vessiot on the differential Galois theory (1904), that is on the possibility to extend the classical Galois theory to systems of algebraic PDE and algebraic Lie pseudogroups, namely groups of transformations solutions for systems of algebraic PDE, has also never been acknowledged. His main idea has been to notice that the Galois theory (old and new) is a study of principal homogeneous spaces (PHS) for algebraic groups or pseudogroups described by what he called automorphic systems of PDE. The purpose of this book is first to revisit Gauge Theory and General Relativity in light of the latest developments just described and then to apply the differential Galois theory in order to revisit various domains of mechanics (Shell theory, Chain theory, Frenet-Serret formulas, Hamilton-Jacobi equations). All the results presented are new.

Table of Contents:
For more information, please visit our website at:Softcover: https://www.novapublishers.com/catalog/product_info.php?products_id=64287E-book: https://www.novapublishers.com/catalog/product_info.php?products_id=64288

About the Author :
Jean-Francois Pommaret (CERMICS, Ecole des Ponts ParisTech, Marne-la-Vallee Cedex, France)


Best Sellers


Product Details
  • ISBN-13: 9781536134100
  • Publisher: Nova Science Publishers Inc
  • Publisher Imprint: Nova Science Publishers Inc
  • Height: 230 mm
  • No of Pages: 146
  • Width: 155 mm
  • ISBN-10: 1536134104
  • Publisher Date: 06 May 2018
  • Binding: Paperback
  • Language: English
  • Weight: 298 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
New Mathematical Methods for Physics
Nova Science Publishers Inc -
New Mathematical Methods for Physics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

New Mathematical Methods for Physics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!