Building Computer Vision Applications Using Artificial Neural Networks
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Computer vision > Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python
Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python

Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Apply computer vision and machine learning concepts in developing business and industrial applications ​using a practical, step-by-step approach.  The book comprises four main sections starting with setting up your programming environment and configuring your computer with all the prerequisites to run the code examples. Section 1 covers the basics of image and video processing with code examples of how to manipulate and extract useful information from the images. You will mainly use OpenCV with Python to work with examples in this section.  Section 2 describes machine learning and neural network concepts as applied to computer vision. You will learn different algorithms of the neural network, such as convolutional neural network (CNN), region-based convolutional neural network (R-CNN), and YOLO. In this section, you will also learn how to train, tune, and manage neural networks for computer vision. Section 3 provides step-by-step examples of developing business and industrial applications, such as facial recognition in video surveillance and surface defect detection in manufacturing.  The final section is about training neural networks involving a large number of images on cloud infrastructure, such as Amazon AWS, Google Cloud Platform, and Microsoft Azure. It walks you through the process of training distributed neural networks for computer vision on GPU-based cloud infrastructure. By the time you finish reading Building Computer Vision Applications Using Artificial Neural Networks and working through the code examples, you will have developed some real-world use cases of computer vision with deep learning.  What You Will Learn ·         Employ image processing, manipulation, and feature extraction techniques ·         Work with various deep learning algorithms for computer vision ·         Train, manage, and tune hyperparameters of CNNs and object detection models, such as R-CNN, SSD, and YOLO ·         Build neural network models using Keras and TensorFlow ·         Discover best practices when implementing computer vision applications in business and industry ·         Train distributed models on GPU-based cloud infrastructure  Who This Book Is For  Data scientists, analysts, and machine learning and software engineering professionals with Python programming knowledge.

Table of Contents:
Section 11. Chapter 1: Prerequisite and Software Installation 1.1. Python and PIP 1.1.1. Installing Python and PIP on Ubuntu 1.1.2. Installing Python and PIP on Mac OS 1.1.3. Installing Python and PIP on CentOS 7 1.1.4. Installing Python and PIP on Windows 1.2. Virtualenv 1.2.1. Setup and activate virtualenv 1.3. Tensorflow 1.3.1. Installing Tensorflow 1.4. PyCharm IDE 1.4.1. Installing PyCharm 1.4.2. Configuring PyCharm to use virtualenv 1.5. OpenCV 1.5.1. Installing OpenCV 1.5.2. Installing OpenCV4 with Python bindings 1.6. Additional libraries 1.6.1. SciPy 1.6.2. Matplotlib Chapter 2: Core Concepts of Image and Video Processing 1.7. Image processing 1.7.1. Image basics 1.7.2. Pixel 1.7.3. Pixel color 1.7.3.1. Grayscale 1.7.3.2. Color 1.7.4. Coordinate system 1.7.5. Python and OpenCV code to manipulate images 1.7.6. Program: loading, exploring and showing image 1.7.7. Program: OpenCV code to access and manipulate pixels 1.8. Drawing 1.8.1. Drawing a line on an image 1.8.2. Drawing a rectangle on an image 1.8.3. Drawing a circle on an image 1.9. Chapter summary 1.10. 2. Chapter 3: Techniques of Image Processing 2.1. Transformation 2.1.1. Resizing 2.1.2. Translation 2.1.3. Rotation 2.1.4. Flipping 2.1.5. Cropping 2.2. Image arithmetic and bitwise operations 2.2.1. Addition 2.2.2. Subtraction 2.2.3. Bitwise operations 2.2.3.1. OR 2.2.3.2. AND 2.2.3.3. NOT 2.2.3.4. XOR 2.3. Masking 2.4. Splitting and merging channels 2.5. Smoothing and blurring 2.6. Thresholding 2.7. Gradient and edge detection 2.8. Contours2.9. Chapter summary Section 23. Chapter 4: Building Artificial Intelligence System For Computer Vision 3.1. Image processing pipeline 3.2. Feature extraction 3.2.1. Color histogram 3.2.2. GLCM 3.2.3. HOG 3.2.4. LBP 3.3. Feature selection 3.3.1. Filter 3.3.2. Wrapper 3.3.3. Embedded 3.3.4. Regularization 3.4. Chapter summary 4. Chapter 5: Artificial Neural Network for Computer Vision 4.1. Introduction to ANN 4.1.1. ANN topology 4.1.2. Hyperparameters 4.1.3. ANN model training using TensorFlow 4.1.4. Model evaluation 4.1.5. Model deployment 4.1.6. Use of trained model 4.2. Introduction to Convolution Neural Network (CNN)4.2.1. Core concepts of CNN4.2.2. Creating training set for CNN4.2.3. Training CNN model using TensorFlow 4.2.4. Inspecting CNN model and evaluating model fitness4.2.5. Using and deployment of trained model4.3. Introduction to Recurrent Neural Network (RNN) and long short-term Memory (LSTM)4.3.1. Core concepts of RNN and LSTM4.3.2. Creating training set for LSTM4.3.3. LSTM model training using TensorFlow4.3.4. Inspecting LSTM model and assessing fitness4.3.5. Deploying LSTM models in practice Section 35. Chapter 6: Practical Example 1- Object Detection in Images 6. Chapter 7: Practical Example 2- Object Tracking in Videos 7. Chapter 8: Practical Example 3- Facial Detection 8. Chapter 9: Industrial Application - Realtime Defect Detection in Industrial Manufacturing Section 49. Chapter 10: Training Machine Learning Model on the Cloud 9.1. Amazon AWS 9.2. Google Cloud Platform (GCP) 9.3. Microsoft Azure

About the Author :
Shamshad (Sam) Ansari works as President and CEO of Accure Inc, an artificial intelligence automation company that he founded. He has raised Accure from startup to a sustainable business by building a winning team and acquiring customers from across the globe. He has technical expertise in the area of computer vision, machine learning, AI, cognitive science, NLP, and big data. He architected, designed, and developed the Momentum platform that automates AI solution development. He is an inventor and has four US patents in the area of AI and cognitive computing.   Shamshad worked as a senior software engineer with IBM, VP of engineering with Orbit Solutions, and as principal architect and director of engineering with Apixio.


Best Sellers


Product Details
  • ISBN-13: 9781484258866
  • Publisher: Apress
  • Publisher Imprint: Apress
  • Height: 254 mm
  • No of Pages: 451
  • Sub Title: With Step-by-Step Examples in OpenCV and TensorFlow with Python
  • Width: 178 mm
  • ISBN-10: 148425886X
  • Publisher Date: 16 Jul 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 898 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python
Apress -
Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!